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1 General introduction

1.1 Simulations to mimic nature.

The subject of this thesis is soft and biological matter. Soft matter covers a wide
range of materials such as colloids, polymers, and surfactants1, that on one hand are
very complex because they consist of large numbers of atoms yet, at the same time
are amenable to systematic experimental studies [1]. An important feature of many
soft-matter systems is that the individual building blocks are so large that they can
be imaged individually by optical microscopy, something that is usually not possible
for simple atomic or molecular systems. As the name suggests, soft materials are
easily deformable. The building blocks in soft materials are small enough to move
appreciable on the time scale of an experiment under the influence of thermal fluctu-
ations. These building blocks are thus able to explore configuration space and, as a
consequence, the static properties of these materials can be described using the tools
of equilibrium statistical mechanics.

An important feature of the phase behavior of many soft materials is the important
role that entropy plays in determining the relative stability of different phases. In
fact, already since the work of Onsager [2] it is known that entropic effects alone can
cause colloidal rods to undergo a transition from the disordered “isotropic” phase
to the orientationally ordered “nematic” phase. The early computer simulations of
Alder and Wood [3, 4] showed that hard, spherical particles can undergo a transition
from a disordered liquid state to an ordered crystalline state only because above some
density the entropy of the crystal becomes larger than that of the liquid.

As the building blocks of soft materials are themselves composite objects, they
can be designed such that they can self-assemble into unconventional phases that
are rarely, if ever, observed in simple molecular systems. The ability to form very
specific structures by self assembly is particularly for soft materials consisting of
biomolecules. In the cell environment fluctuations due to thermal noise are signif-
icant and the specific interactions between biomolecules allow living organisms to

1Concise definitions of “technical” terms, such as colloids, polymers and surfactants are
given in section 1.2
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1 General introduction

Figure 1.1: The schematic representation of two-type nano-scale gold particles coated
with DNA strands. a) Dark particles (A) are coated with strands with ss DNA termi-
nal parts which has complementary sequence to those grafted to light particles (B).
When A and B are close the particles bind due to specific binding interactions between
complementary ends. b) The self-assembly of these particles with CsCl structure that
has been achieved in experiments of Refs. [5, 6].

construct intricate composite structures by self assembly. One of the reasons why
biomolecules can form such complex structures is that the interaction between differ-
ent molecules can be highly specific: a given molecule will therefore only bind to its
putative partner and not to the myriad of other molecules in the cytosol. Yet, whilst
the interaction between biomolecules is highly specific, it is usually not irreversible.
To give a specific example: The four basic building blocks of DNA, i.e. the bases
adenine (A), cytosine (C), guanine (G), and thymine (T), placed along the backbone
of ssDNA strand, have a very specific interaction among themselves. The interaction
between two complementary sequences of single-stranded DNA is highly specific
and quite strong. However, by changing the physical conditions (e.g. changing the
temperature or the salt concentration) the double-stranded DNA can be made to disso-
ciate. This combination of specific interactions and reversibility makes biomolecular
linkers, in particular those based on DNA, very interesting candidates for the design
of novel “inanimate” self-assembling soft materials.

The highly specific nature of binding in double-stranded (ds) DNA offers many
possibilities for the use of this biomolecule in micro- and nano-technology. For ex-
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1.1 Simulations to mimic nature.

ample, colloidal particles coated with distinct species of short single-stranded (ss)
DNA can bind specifically with each other via suitable DNA ‘linkers’ [7, 8, 9, 10].
These “suitable” linkers are themselves ssDNA strands added to the solution. Such
DNA-coated colloids may offer a route to novel colloidal crystals [8, 10]. To make
colloidal particles crystallize is an interesting problem in its general form, since it is
one of the promising ways to control the structure and therefore properties of mate-
rials. This is not a new phenomenon for experimentalist: Without using any coating
spacers or linkers, many particles do make ordered structure (as an example when the
surrounding solution evaporates).

The “specific” DNA-mediated interactions may be made stronger than the “non-
specific” interactions that normally dominate aggregation and self-assembly in col-
loidal systems. Recent experimental studies on gold nano-particles [5, 6] have suc-
cessfully used short DNA strands to “direct” the self-assembly of particles into a
non-close packed crystalline structure. Fig. 1.1 schematically shows the structure of
these coated-colloid building blocks. Nevertheless, experiments that aim to achieve
DNA-controlled self-assembly are very challenging. “Non-specific” and uncontrol-
lable interactions remain one of the main challenges in controlling the structure of
self-assemblies, and our understanding of the factors that control DNA-mediated in-
teractions between colloids is still far from complete.

Computer simulations provide a powerful tool to probe the factors that determine
the self assembly of complex bio-mimetic materials. The present thesis focuses on
the development of computational tools to study the interaction between, and phase
behavior of, colloidal particles that can bind to each other via linker molecules.

As the term “computer simulation” already suggests, our approach will be to in-
vestigate the behavior of bio-molecular systems by “mimicking” nature using com-
putational tools. Here we face two conflicting requirements: on the one hand, our
model description should be sufficiently realistic to reproduce the essential features
of the system under consideration yet, at the same time, it should not be so detailed
as to make numerical simulations prohibitively expensive. To this end, we must leave
the atomic-level description of the components in the system under study and use a
more coarse-grained approach where, for instance, colloids are not modeled as an
assembly of billions of atoms but as simple, structureless objects (e.g. spheres or
rods) that have an effective interaction that reproduces the interaction that we would
have obtained if we would have taken all atoms into account explicitly. In addition,
the atomistic description of the solvent is usually replaced by one where the solvent
is described as a structureless, continuous medium. The key challenge in formulat-
ing a coarse-grained model is to construct accurate effective interactions between the
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1 General introduction

coarse-grained objects.

Once we have an adequate, coarse-grained model we need a numerical technique
that allows us to compute the equilibrium properties of the system under consider-
ation. The “work-horses” of computer simulation are, on the one hand, Molecular
Dynamics (MD) and, on the other, Monte Carlo (MC) simulations (see e.g. [11]).
In spirit, the Molecular Dynamics method is most closely related to experiment: av-
erage properties of a many-body system are computed by following the natural time
evolution of a system for a sufficiently long time to obtain accurate averages. In such
a simulation, the (Newtonian) equations of motion of all particles are solved approx-
imately by discretizing time. At every time step, the force (and, if applicable, torque)
on each particle is computed and this information is then used to update the velocities
of all particles. Similarly, the positions of all particles are updated using the informa-
tion about their instantaneous velocities. The MD technique is particularly useful if
one is interested in the time-dependent behavior of a molecular system. However, for
coarse-grained, soft materials, the motion of the (coarse-grained) particles is usually
not described by Newton’s equation of motion because the motion of coarse-grained
particles through a continuous solvent is diffusive, rather than ballistic. Alterna-
tive algorithms exist to model the stochastic motion of particles in a hydrodynamic
medium. However, as the focus of the present work is on equilibrium properties, I
refer the reader for details to the relevant literature [12, 13, 14]. In the present the-
sis, I will make use of Monte Carlo simulations to study the structural properties of
biomolecular systems. In a Monte Carlo simulation, we do not attempt to reproduce
the natural dynamics of the system under consideration. Rather, the MC method per-
forms an importance-weighted random sampling of the various configurations of the
system, in such a way that configurations are visited with a frequency proportional
to their Boltzmann weight. With this algorithm it is possible to compute equilibrium
properties of a many-body system. However, the actual “dynamics” of the system is
not related to the natural equations of motion. MC simulations are useful to study the
static properties of systems that have no natural dynamics, but also to study systems
where the natural dynamics is very slow, under conditions where MC sampling is
still efficient. An example is a dense polymer solutions where the natural dynamics
may be very slow, yet MC sampling based on the artificial insertion/deletion of entire
chains in the system may be quite fast. Another advantage of MC simulations is that
there is an unlimited reservoir of possible “unphysical” moves that can be designed
to deal with specific conditions. It should, however, be stressed that a correct MC
algorithm has to satisfy certain rigorous criteria that ensure that a correct Boltzmann
sampling of configurations is achieved. Within these constraints, it is often possible
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1.1 Simulations to mimic nature.

to find clever ways to “bias” the sampling of configurations in such a way that the
efficiency of the simulation is enhanced [11] (See also section 1.2).

1.1.1 Synopsis

This thesis focuses on the use of simulations to study the behavior of colloidal parti-
cles that form multiple “bonds” via chain molecules that can either bind reversibly to
the surface of the colloids (“telechelics”) or via grafted polymers (in particular DNA)
that can bind specifically to complementary polymers bound to other colloids. In
chapter 2 we consider the development of suitable algorithms to simulate telechelic
polymers that can bind strongly to a (colloidal) surface. It turns out that the com-
bination of high binding strength on the surface and excluded volume interactions
between the polymers makes “brute force” calculations difficult. For this situation,
we propose a novel algorithm that combines the so-called “moment-propagation” to
sample non-self-avoiding polymers with the configuration bias method to deal with
self-avoidance effects. In chapter 2 we use a coarse-grained model to represent poly-
mers as self-avoiding walks on lattice. We show that our approach is particularly
useful to simulate dense systems of polymers with functionalized end groups. We
compare the efficiency of the new scheme with a commonly used configurational
bias MC method. We find that no single method is preferred under all conditions. We
indicate the regime where the present approach is the method of choice.

Interestingly, it turns out that some of the methodology developed in chapter 2
can be applied in a completely different part of biophysics: we shall argue that the
moment-propagation method offers a novel, and uniquely sensitive, method to iden-
tify underlying steps in noisy experimental data on the motion of molecular motors
along linear “tracks” (e.g. kinesin on microtubules). This “detour” is the subject of
chapter 3. The algorithm that we propose in chapter 3 is based on the numerical
estimate of the “free energy” of an ensemble of directed random walks of different
step sizes. We argue that this method allows us to detect the underlying step size of a
molecular motor under “noisy” conditions where existing methods fail.

Chapters 4 and 5 then contain a description of the coarse-grained model that we use
to simulate systems of colloidal particles coated with long DNA strands with “sticky”
ends. In particular, chapter 4 describes a Grand Canonical GC simulation technique
to study the self-assembly of mixtures of colloids that are coated with “sticky” DNA
strands. Using a coarse-grained model to represent DNA strand as “soft” spheres,
we study the effective interactions between the colloids. We develop a method that
allows us to relate the binding properties of DNA-coated colloids to the (known)
equilibrium constants for dimerization in solutions of the isolated “sticky” ssDNA
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1 General introduction

strands.
In chapter 5 we use the GC method mentioned above to simulate an equimolar

mixture of hard colloids coated with “long” polymers with sticky ends. The sticky
ends are “complementary” ssDNA strands that can selectively bind to each other.
Under conditions where the complementary ends are strongly associated we observe
a first order vapor-liquid transition from a dilute gas of colloidal dimers to a dense,
liquid-like phase. This transition is driven exclusively by the increase in entropy
associated with bond disorder. We show that the transition persists as we switch to
low but finite temperatures.

1.2 Useful terms

Certain terms will be used quite time and again in this thesis. It is therefore useful
to provide the reader with a (non-rigorous) working definition of the most frequently
used terms.

Colloids are particles with a size between a few nanometers and a few microns.
Because of their size they are too large to be described explicitly in terms of their
detailed atomic structure. Yet they are small enough to be subject to thermal fluc-
tuations. Colloids come in many shapes and chemical compositions. In fact, many
familiar substances, from food products, paint and cosmetics to blood are colloidal
suspensions. Part of the interest in colloids derives from the fact that they can be
viewed as scaled-up models of atoms or molecules. In particular, they may exhibit
the same phases as atoms and molecules: colloidal vapor, liquid , crystal and even
liquid-crystalline phases have been observed. In addition, colloids may form glasses
and gels. As colloids are much larger than atoms and move much more slowly they
can often be studied by relatively simple optical microscopy.

Polymers are long chain molecules that are built from a repeat unit called a
monomer. On a local scale, the properties of these chains are characterized by the
structure of its monomers, but on a longer length scale, only the number, the effec-
tive size and the flexibility of the building blocks matter, as well as topology of the
chain (e.g. linear or star like). Due to the large number of internal degrees of free-
dom, the statistical properties of polymers can often be estimated using the tools of
statistical mechanics [15]. DNA is an example of a natural polymer: in its standard
form, it is a double helix consisting of two single-stranded chains that consist of a
sugar/phosphate backbone to which four characteristic “bases” may be connected:
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1.2 Useful terms

adenine (A), cytosine (C), guanine (G) and thymine (T). Each of these bases can bind
to a specific complementary base on the opposing strand of the double helix: C to G
(via three hydrogen bonds) and A to T (via two hydrogen bonds) (see e.g. [16]).

Telechelics are polymers that have functionalized end groups that can bind to
specific targets. In this thesis we are specifically interested in telechelics with two
functional end groups that can link to surfaces and to double-strand (ds) DNA that is
“functionalised” by having a single-stranded (ss) end sequence. The ssDNA acts as
“sticky” endgroup that can bind to a complementary ssDNA group on another dsDNA
chain. The important characteristic of these DNA-based telechelics is that the binding
of these sticky ends is very specific as it depends on the sequence of ssDNA.

Molecular motors are biological machines that perform a plethora of mechan-
ical and chemical tasks in a living cell. Some motors act as transporters of “cargo”
through the cell. These motors walk on fairly rigid protein filaments such as micro-
tubules. Other motors may drive the relative motion of (actin) fibers, for instance in
muscle action. Molecular motors use the chemical energy released during the hydrol-
ysis of ATP to perform mechanical work.

Grand Canonical (GC) ensemble is an ensemble of configurations for a
system in which volume, temperature T , and chemical potential µ, are fixed and
the number of particles is allowed to fluctuate. The system is considered to be in
equilibrium with a large reservoir, i.e. T = Treservoir and µ = µreservoir. In GC
simulations, normal Monte Carlo moves are combined with particle exchange moves
between the system under consideration and a fictitious reservoir at constant chemical
potential [11]. In this thesis we use the GC ensemble to study interacting polymers
(chapter 2), and DNA-coated colloids ( chapter 4 and 5 ). Detailed descriptions of
simulation techniques are presented in each chapter.

Detailed Balance (DB) is a sufficient (but not necessary) condition that en-
sures that a Monte Carlo simulation will not drive a system out of thermal equi-
librium. It is based on the assumption that, in thermal equilibrium, the number of
transitions from any state i to any other state j should, on average, be balanced ex-
actly by the number of transitions from j to i. Throughout the thesis we will employ
MC algorithms that satisfy Detailed Balance.

7



1 General introduction

Biased sampling is a generic term that refers to a wide range of methods that
change (usually enhance) the acceptance probability of Monte Carlo trial moves by
biasing the probability with which different moves are attempted. Several biased
MC schemes are discussed in Ref. [11]. In chapter 2 we introduce a specific biased
scheme to sample configurations of dense systems of telechelic polymers.

8



2 A lattice-based Monte-Carlo for

telechelics

2.1 Introduction

Polymer simulations are often time-consuming because the natural dynamics of poly-
mers is slow. For this reason, many Monte Carlo methods have been developed that
sample the configurational space of polymeric systems by carrying out efficient “un-
physical” trial moves, i.e. moves that do not correspond to the slow natural motion
of polymeric chains, yet do preserve the Boltzmann distribution (see, e.g. Repta-
tion [17, 18], Pivot moves [19], Configurational-Biased Monte-Carlo(CBMC) [11],
Connectivity-altering [20], Hyper-Parallel Tempering [21], Wormhole moves [22].)
In spite of the great variety in computational schemes, there are situations where
polymer simulations are still very inefficient. This is particularly true in the case of
polymers that can bind to heterogeneous surfaces. It is, for instance, time consuming
to compute the free energy of a system of polymers that can either be non-adsorbing
or form bridges and loops between surfaces.

In this chapter, we describe a Grand-Canonical Monte-Carlo technique that is par-
ticularly efficient for simulations of “Telechelic” polymers that interact strongly with
surfaces. The basic idea is to use the statistics of non-self-avoiding walks to grow
self-avoiding walks (SAW) on a lattice. Whilst there exists no “cheap” method to
enumerate the number of SAW chain conformations in a given system, efficient algo-
rithms exist to count the number of polymer conformations that correspond to ideal
and non-reversible (NR) random walks. NR walks are random walks that exclude
180-degree reversal: i.e. retracing the last step is excluded. We can count the num-
ber of NR walks using the so-called moment-propagation (MP) scheme [23]. To
be more precise, during a trial move we enumerate all NR walks for one polymer,
while keeping the positions of all other polymers fixed. The exact enumeration of
NR walks implies that if there is only a single acceptable conformation for the ad-
ditional polymer, it will be included in the enumeration. However, some acceptable
NR configurations may not be self-avoiding and will therefore be rejected at a later
stage.

9



2 A lattice-based Monte-Carlo for telechelics

This pre-screening of acceptable configurations greatly enhances the success rate
of particle-insertion moves. In fact, as we will show, the present method becomes
much more efficient than CBMC at high densities. In the following, we explain how
we can incorporate the number of NR walks in a lattice-based CBMC scheme and
use this scheme to grow self-avoiding chains. We will demonstrate that the MC ac-
ceptance rule satisfies detailed balance. Finally, we show a number of results for non-
adsorbing and for telechelic chains, on the one hand to validate the present method
and, on the other, to quantify its relative performance with respect to other existing
schemes.

2.2 Grand-Canonical method

Consider a regular lattice with coordination number z. We assign a set of z numbers
to each lattice site. Each number represents a weight which is related to one of
the neighbors. Let i and j be two neighboring sites on the lattice. ω ′(i; j → i; l)
is defined as the Boltzmann-weighted number of non-reversible walks of length l,
which end at site i along the bond j → i. Hence ω′(i; j → i; l) can be viewed as the
partition sum of a single NR chain that has its end segment along the link i − j. As
NR walks cannot retrace their last step, it is necessary to label not simply the number
of walks arriving at site i, but also the lattice site last visited. For instance, if we
wish to calculate ω′(i; j → i; l + 1) knowing the corresponding weights for walks of
length l we should exclude those walks that went form i to j in the previous step

ω′(i, j → i; l + 1) =





∑

j′∈〈j〉′

ω′(j, j′ → j; l)



ω(i, 0). (2.1)

where 〈j〉 is defined as the set of z nearest neighbors of site j, and by 〈j〉′ we mean
the conformation-dependent set which excludes the last step (site i in the above case).
ω(i, 0) is defined as the Boltzmann weight due to the interaction of a monomer at site
i with other polymers or with external interactions, such as walls. This Boltzmann
weight is a measure of the accessibility of site i for a monomeric unit (chain of length
0). As an example, for hard monomers, ω(i, 0) = 0 when the site is occupied and 1
when it is empty. It is then sufficient to know ω(i, 0) for all lattice sites i to calculate
all the weights for any length.

The weights ω′ determine the likelihood of growing a non-reversible walk with a
fixed length l coming from a specified direction. Using these weights in the insertion
algorithm will introduce a bias that facilitates the finding of acceptable conformations

10



2.2 Grand-Canonical method

for the polymer to be inserted. It would, of course, have been possible (in fact, eas-
ier) to calculate the number of ideal random walks and their corresponding weights.
However, as very few ideal walks are completely NR, the subsequent step in the al-
gorithm would reject most of the walks thus generated, because at some points, they
retrace their steps. For this reason, the use of NR weights is more efficient.

Insertion algorithm Having computed all weights ω′(i1, j → i1; n) for n =
0, 1, · · · l, we can now start inserting the self-avoiding chain, using these weights as
a bias. Lattice sites from which there emerge large numbers of NR walks will be
favored over those that spawn none, or only few. In what follows, we will assume
that non-bonded monomers of the same chain cannot occupy the same lattice site,
but do not interact otherwise. If that is the case, self-avoidance effects only come
into play upon growing the 4th polymer segment (at least, on a simple cubic lattice).
However, it is straightforward to generalize the present approach to the case where
intra-chain interactions are longer ranged. We will also assume that all the polymers
are of the same length. We generate a trial conformation of a chain with fixed length
l following these steps:

1. The first monomer i1 is selected with probability

p1 =

∑

j∈〈i1〉
ω′(i1, j → i1; l)

Qeff

The sum in the numerator is a sum over all z neighbors of site i1 and it gives
the total number of non-reversible walks of length l terminating at site i1 from
different directions. Qeff is the total number of NR walks of length l in the
system of M lattice sites:

Qeff =
M
∑

i=1

∑

j∈〈i〉

ω′(i1, j → i1; l). (2.2)

The above expression simplifies to Mz(z − 1)l−1 for an empty lattice contain-
ing M sites.

2. The second monomer is selected from one of the z neighbors of i1, called i2,
with a probability
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Figure 2.1: Schematic representation of moment propagation algorithm. The arrows
show the trace of polymer chain as it has been building from the first monomer i1.
The curved lines indicate the possible candidates for the next monomer to be chosen.
As it has been shown the curved line at i4 excludes the position of monomer i1. See
the algorithm in the text.

p2 =
ω′(i1, i2 → i1; l)

∑

j∈〈i1〉
ω′(i1, j → i1; l)

3. The third monomer is selected from one of the neighbors of i2 with probability

p3 =
ω′(i2, i3 → i2; l − 1)

∑

j∈〈i2〉′
ω′(i2, j → i2; l − 1)

.

4. The fourth monomer is selected from one of the neighbors of i3 with probabil-
ity

p4 =
ω′(i3, i4 → i3; l − 2)

∑

j∈〈i3〉′
ω′(i3, j → i3; l − 2)

.
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2.2 Grand-Canonical method

5. Starting with the fifth monomer we have to take into account the self-avoidance.
The fifth monomer is chosen with the following probability,

p5 =
ω′(i4, i5 → i4; l − 3) exp[−βuint(i5)]

∑

j∈〈i4〉′
ω′(i4, j → i4; l − 3) exp([−βuint(j)]

The “internal” energy uint(is) accounts for the interactions with all monomers
1 to s − 1, that have been already grown.

6. Step 5 is repeated until the whole chain is grown (unless the growth process
terminated in a dead-end, due to intra-chain interactions). The probability of
choosing the s-th monomer equals to

ps =
ω′(is−1, is → is−1, l + 2 − s) exp[−βuint(is)]

∑

j∈〈is−1〉′
ω′(i2, j → i2, l + 2 − s) exp[−βuint(j)]

Once we have grown the whole chain, the move is accepted with the following
probability,

acc(np → np + 1) =

min

{

1,
exp(βµ)Qeff

∏N
l=1〈exp[−βuint(il)]〉

np + 1

}

. (2.3)

In the above equation, the terms in angular brackets denote the weighted averages of
Boltzmann factors of the internal potential along the chain, defined as

〈exp[−βus(is)]〉 ≡
∑

j∈〈is−1〉′
ω′(i2, j → i2, l + 2 − s) exp[−βuint(j)]

∑

j∈〈is−1〉′
ω′(i2, j → i2, l + 2 − s)

. (2.4)

To clarify the meaning of the acceptance rule, we decompose it in three different
parts. The first part, exp[βµ]/(np + 1) comes from the chemical potential or, equiv-
alently, the average polymer density in the “osmotic reservoir” in contact with the
system. We know this part before growing a chain or calculating any weight. The
second part is Qeff which comes from the NR guiding weights. To know this part we
have to calculate NR weights before each trial of exchanging a new chain. However

13



2 A lattice-based Monte-Carlo for telechelics

this part does not depend on the specific configuration that we grow. The only part
in the acceptance argument that depends on the configurations is the product term. If
we had ignored self-avoidance affects in the NR chain, the terms in Eqn. 2.4 would
have been equal to unity and the acceptance probability would have been determined
only by Qeff .

The main difference between the new biased scheme and CBMC is the presence
of non-local guiding weights ω′. In general, in a CBMC scheme a trial conformation
will be generated using local conformation-dependent weights. In the new scheme
these weights carry long range information about acceptable conformations of the
whole system. This facilitates the growing process and will increase the acceptance
rate. In the next section, we show that the proposed algorithm satisfies detailed bal-
ance.

Now consider the situation in which a chain is randomly selected to be completely
removed. First, we remove the chain and re-calculate the guiding weights ω ′. Then
we reconstruct the same old configuration monomer by monomer. At each step we
calculate the weighted average of uint which is defined in equation 2.4. After the
whole chain has been retraced we will remove it with the probability:

acc(np + 1 → np) =

min

{

1,
np exp[−βµ]

Qeff
∏N

l=1〈exp[−βuint(il)]〉

}

. (2.5)

We considered several ways of improving upon the above algorithm. Since we
know some parts of the acceptance argument before trying to grow a configuration,
we could split the rejection criterion in two or three parts ( See Appendix 2.6). This
might increase the computational efficiency as we can reject a “doomed” trial config-
uration at an early stage. However, it turns out that splitting the acceptance procedure
in parts is not helpful for dense systems – and it is precisely for these systems that the
present approach is most competitive. For this reason, we used the acceptance rule in
the form given in Eqn. 2.3 and Eqn. 2.5.

2.3 Detailed Balance

The acceptance rule in Eqn. 2.5 should satisfy Detailed Balance (DB). Let us define
α(np → np + 1) as the probability of generating a new configuration, and acc(np →
np+1) as the probability of accepting it and let α(np+1 → np) and acc(np+1 → np)
denote the corresponding quantities for the reverse move. DB implies that:
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2.4 Efficiency

PB(np)α(np → np + 1)

PB(np+1)α(np + 1 → np)
=

acc(np + 1 → np)

acc(np → np + 1)
, (2.6)

where PB(np) (PB(np+1)) denotes the Boltzmann weight of the configuration with
np (np+1) polymers. Looking back at the insertion algorithm we can derive α(np →
np + 1) by calculating the probability of the new configuration.

α(np → np + 1) =
l
∏

s=1

ps =

∑

j∈〈i1〉
ω′(i1, j → i1; l)

Qeff

× ω′(i1, i2 → i1; l) exp(−βuint(i2))
∑

j∈〈i1〉
ω′(i1, j → i1; l) exp(−βuint(j))

× ω′(i2, i3 → i2, l − 1) exp(−βuint(i3))
∑

j∈〈i2〉′
ω′(i2, j → i2, l − 1) exp(−βuint(j))

×...

× ω′(is−1, is → is−1; l + 2 − s) exp(−βuint(is))
∑

j∈〈is−1〉′
ω′(is−1, j → is−1; l + 2 − s) exp(−βuint(j))

...

We can rewrite the above equation in a simple form using Eqn. 2.1 and Eqn. 2.4:

α(np → np + 1) =
exp(−βUint)

Qeff
∏l+1

s=1〈exp(−βuint(is))〉
.

where Uint =
∑

s uint(is) denotes the total internal energy of the chain. By inserting
α(np → np + 1) in Eqn. 2.6 we recover the acceptance rule that we have used in the
insertion algorithm.

2.4 Efficiency

2.4.1 Wall-wall effective pair potential

To validate the present method, we first applied it to compute the depletion interaction
due to non-adsorbing, self-avoiding polymers between hard walls. This system pro-
vides a convenient yet non-trivial test of our algorithm, as Bolhuis et al. [24] and Tu-
inier et al. [25] have calculated the depletion interaction of SAW polymers between
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Figure 2.2: Depletion interaction for athermal, self-avoiding lattice polymers between
unstructured hard walls. The strength of the depletion interaction is expressed in
units kBT/R2

g. The three sets (lines) correspond to three different densities: 0.26,
0.62 and 1.01 ρ∗, where ρ∗ denotes the overlap concentration (see text). The parallel
shadowed lines indicate the error bars. The corresponding data points of Ref. [24]
and Ref. [25] are indicated as squares and circles.

hard walls using Configurational Bias MC, over a wide range of polymer densities.
The depletion attraction can be computed by determining the grand-partition-function
Ξ, at fixed chemical potential µ. For each separation between two walls a thermo-
dynamic integration relates the grand-partition function Ξ, to the average number of
particles in the system 〈N(µ′)〉,

kBT ln Ξ(µ, d) =

∫ µ

−∞
〈N(µ′)〉dµ′. (2.7)

The depletion interaction follows by subtracting the bulk contribution to the grand
potential and the contribution due to two non-interacting surfaces. In what follows,
we denote the radius of gyration of the polymers by Rg. The overlap concentration
ρ∗ will be defined as 1/vp, where vp = 4/3πR3

g is the effective volume of a single
polymer coil. Systems with concentrations well below ρ∗ are considered to be dilute.
Here, we report results for three densities and compare the results with those reported
in Ref. [24] and [25].

We carried out grand-canonical MC simulations for self-avoiding polymers of
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2.4 Efficiency

length l = 100. The polymers were simulated on a cubic lattice between two hard
walls. Several simulation were carried with different spacing between the walls. In
the direction parallel to the walls, we employed periodic boundary conditions. The
lateral size of the periodic box was 50×50 lattice sites. Hard-core repulsions were
defined to exclude conformations where two monomers occupy the same lattice site.
For the Monte Carlo moves we used the “wormhole method” of Houdayer [22] (See
Appendix 2.5). The MP method described in previous section was used for polymer
insertion and deletion. We calculated the average number of particles as a function of
chemical potential. We started from a very dilute regime (corresponding to µ = −∞)
to get a correct estimation of Ξ. When the surface separation is large, kT ln Ξ con-
tains only the bulk contribution (that can be computed for a system without walls)
and the constant contribution due to two non-interacting walls, 2γwA, where A is the
surface area of the hard wall. Hence, by comparing kT ln Ξ for a bulk system and a
system with the same number of lattice sites, but enclosed between two hard walls,
we immediately obtain γw. Fig. 2.2 shows the results of these simulations for three
different concentrations. Within the regime where scaling arguments are valid, the
depth and range of the potential only depend on the radius of gyration and concen-
tration. As expected, the depth of the potential increases with increasing polymer
density. In view of the large difference between the results of refs. [24] and [25], our
results appear consistent with both (unfortunately, neither paper quotes error bars).
Our data are closest to those of Ref. [25]. We note that, in order to reproduce the
bulk densities of Ref. [24] and Ref. [25] for a chain with length 100 we assumed
Rg ≈ 6.476 as was calculated by Nickel [26]. Our error estimates in Fig. 2.2 have
been calculated by taking into account the statistical errors in integration, fitting and
subtracting.

Compared to the CBMC method, MP has a higher insertion rate per MC trial move;
in the above case, it is some 100 times higher. However, the CBMC method is much
less time consuming. We performed the same simulation with the CBMC method to
compare the efficiency and found CBMC to be about 5000 times faster than MP in
the above case. With both methods higher densities can be simulated. For chains of
length L = 100 densities up to 3ρ∗ are feasible. To conclude, with the MP method
we can reproduce the earlier CBMC results. However, for the specific problem of
non-adsorbing polymers between hard walls, CBMC is clearly the method of choice.

Although MP fails to bring an improvement for systems with only hard core in-
teractions, it turns out to be more useful in problems with different kinds of interac-
tions. MP is far more efficient in identifying rare configurations with very low energy
(i.e. with large Boltzmann weight). A good example is a system of polymers with
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2 A lattice-based Monte-Carlo for telechelics

strongly interacting end groups. Such polymers can bind to each other or to specific
binding sites on surfaces. A case in point is the binding of DNA chains with single-
stranded end segments, to colloids coated with complementary single-stranded (ss)
DNA. Such polymers can form bridges between colloids or form loops on single sur-
faces. The interactions between surfaces are the combination of bridging attraction,
steric repulsion of the loops or dangling polymers, and depletion of the free linkers.
In order to compute the effective interaction free energies between the surfaces, it is
crucial, yet difficult, to sample well equilibrated systems. Here the advantage of the
present moment-propagation scheme over CBMC becomes clear.

2.4.2 Tethered polymers

In order to test the efficiency of MP on the above-mentioned class of problems, we
performed simulations on systems with end-associating polymers between two walls.
Apart from the end-group interactions, the system is the same as the one described
in the previous section. Each polymer is considered as a SAW chain which in this
case can attach to the surfaces with its terminal groups, due to a strong, short-ranged
attraction. In what follows, we will consider the specific case that the two walls
are identical. This implies that polymers can either form loops by adsorbing both
their ends on one wall, or form bridges by attaching to both surfaces. In addition,
the polymers may have one or two end groups unbound. The range of the binding
interaction is set to one lattice spacing, meaning that the binding sites are placed next
to the hard wall. The surface grafting density ρs measures the fraction of binding
sites at each layer. The binding energy εb is defined as the depth of the attractive
potential. Other parameters such as the bulk density ρ and the separation between
the hard walls affect the computational efficiency. Most of the existing methods
fail to equilibrate systems at high densities. Also finding bridged conformations is
increasingly difficult at higher densities, especially when the separation between the
surfaces is large compared to Rg (because then the most favorable links are highly
stretched).

Fig. 2.3 shows a typical example of the difference in performance between CBMC
and MP. The results shown in this figure correspond to a situation where the grafting
density ρs = 0.02, which corresponds to 50 sites per wall in our case. We chose a
relatively large binding energy: εb = 10kBT . Such large values are not unphysical:
for instance, the hybridization free energy with which DNA strands bind to ssDNA
coated colloids is in this range. For instance, the hybridization of ssDNA of 14 bases
is in the range of 25 − 30kBT [27]. In our simulation every chain has two inter-
acting ends, i.e. the energy of a bound configuration is 2εb = 20kBT . The bulk
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2.4 Efficiency

Figure 2.3: Rate of equilibration of the number of bound (bridge or loop) polymers
between two walls as computed using the MP scheme (squares) and the CBMC scheme
(circles). The horizontal axis indicates the required CPU time. The spacing between
the two walls is 8 lattice units. The volume fraction of monomers is 0.23. The fraction
of binding sites on the surface, ρs = 0.02. The binding energy, εb = 10kBT .

monomer volume fraction, ρmon = 0.23. As can be seen from the figure, the CPU
time needed for equilibration is much less when using the MP method than with the
CBMC method. In fact, CBMC seems to fail to equilibrate the system, even for
the longest runs. We note that the two methods approach equilibrium in a very dif-
ferent way. Starting from very dilute initial conditions, the MP scheme first grows
bound configurations. In most cases, these bound configurations reach their equi-
librium value even faster than those that are free. The reason why the MP scheme
favors configurations with higher Boltzmann weight in the selection process is that
the Boltzmann-weighted numbers ω′ (see Eqn. 2.1) provide information about acces-
sible configurations. By contrast, CBMC initially fills the system with dangling and
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Figure 2.4: Density dependence of the equilibration rate of the MP and CBMC
schemes. The figure shows the number of bound (bridge or loop) polymers between
two walls as a function of CPU time. As in figure 2.3, the spacing between the two
walls is 8 lattice units. The fraction of binding sites on the surface, ρs = 0.02 and
the binding energy, εb = 10kBT . Results are shown for a high monomer concentra-
tion (45%) and a low monomer concentration (13%). The inset shows the density
dependence of the number of bound polymers.

free polymers. This makes it subsequently more difficult to reach the equilibrium
density of bound configurations.

To check the efficiency of our method we performed simulations for three dif-
ferent grafting densities ρs = 0.02, 0.2, and 1.00, and different binding energies
εb/(kBT ) = 5, 10. We also studied the system both in a narrow gap d = 3, and in
larger distances like d = 8, and we tried different bulk densities.

On the basis of these simulations, we reach the following tentative conclusions:
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Figure 2.5: The density dependence of the number of bound polymers.

At high grafting densities the MP scheme is less useful. This comes about because
in equilibrium all polymers will be bound. Then all configurations have the same
energy and there is no need for a scheme (such as MP) that will identify rare config-
urations that have a much higher Boltzmann weight than most others. As one might
expect, both methods become inefficient at high densities and large wall-wall sep-
arations. However, the results show that increasing polymer density affects CBMC
much more adversely than MP. We compared the two methods at low and high den-
sities in fig. 2.4. At high densities, CBMC fails to find bound chains, while MP is
much closer to the equilibrated system. The MP method is therefore the method of
choice in cases where there is a large heterogeneity in binding energies and in sys-
tems where the accessible volume per polymer is small. Both situations are relevant
for the study of selective binding of biomolecules to specific substrates. Interestingly,
the results shown in figs. 2.3 and 2.4 suggest that the number of bound polymers is
not a monotonic function of density. It first increases with increasing density and then
decreases (See fig. 2.5). We can see this effect with the novel approach presented in
this chapter, but not with CBMC. Still, we should caution that, even with the MP
method, it is difficult to obtain high statistical accuracy at high polymer densities.
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2 A lattice-based Monte-Carlo for telechelics

2.5 Appendix A: Wormhole moves

The wormhole method proposed by Houdayer [22] includes special reptation moves
that allows a polymer to perform an unphysical Monte Carlo move whereby it “rep-
tates” segment-by-segment from one part of space to another position that, in general,
will not be near its original position. This feature of the algorithm explains the name
“wormhole move”. During a move (that may consist of a large number of reptation
moves) the polymer is in an unphysical state where it is split in two parts that are
connected respectively to the “entrance” and the “exit” of the wormhole. A worm-
hole move is only complete when the complete chain is reassembled again, either
at the exit or at the entrance of the wormhole. Configurations of the system during
wormhole moves are unphysical and are not sampled.

In practice, the algorithm works as follows:

Consider a linear chain on lattice 1 with N monomers labeled i1 to iN .

1. Choose one of the terminal monomers i1 or iN at random, with probability 0.5.
For the sake of the argument, we will assume that i1 was thus chosen.

2. Move the chosen monomer to a random trial position that is chosen from a uni-
form distribution over the simulation box. If this position is already occupied,
the trial move is rejected (and this wormhole move is terminated). However,
if the new position is unoccupied (or more generally, if the reptation move is
acccepted), proceed to the next step.

3. This move breaks the existing bond between i1 and i2 and, by analogy to the
conventional reptation scheme, a “bond” is now formed between i1 and iN .
However, this is only a virtual bond: it is introduced to maintain the analogy
with normal reptation. In the new situation, the end points of the new poly-
mer configuration are i1 (now at the end of the wormhole) and i2 that is still
connected to the entrance of the wormhole (located at iN ).

4. Randomly select a monomer at either endpoint and attempt a trial move that
will reconnect it to the other endpoint. Use the normal (e.g. Metropolis) rule
to accept or reject this trial move.

5. If, after this move, the polymer is still straddling the wormhole (i.e. i1 and iN
are connected via the wormhole) repeat step 4. Otherwise, the polymer has

1Although we consider lattice polymers here, the method also works for off-lattice polymers
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2.6 Appendix B: splitting insertion arguments

been reassembled (at either end of the wormhole) and the wormhole move has
been completed.

It is important to stress that, even if the wormhole move “fails” in the sense that the
polymer ends up at the same side of the wormhole where it started, the state of the
polymer will, in general, have changed because the chain will have reassembled in a
different conformation at the entrance of the wormhole. This speeds up relaxation.
In addition, the computing effort for the wormhole scheme appears to scale favorably
with polymer size for long polymers (namely as N 2 rather than as exp(cN)).

2.6 Appendix B: splitting insertion arguments

The wormhole algorithm discussed in appendix A is a particular example of a com-
posite MC move where an acception-rejection criterion is applied to every sub-step.
In the case of Grand-Canonical Monte Carlo simulations of polymers, we can also
decompose the trial moves into sub-steps that may be accepted/rejected individually.
However, the difference with the wormhole move is that, in this case, a rejection of
any substep implies the rejection of the entire move. Let us consider the typical con-
dition on the acceptance probability of a particle-insertion/removal trial move that
follows from the condition of detailed balance.

acc(np → np + 1)

acc(np + 1 → np)
= P. (2.8)

Now suppose that the ratio P can be expressed as the product of several (non-
negative) factors that can be computed individually and sequentially. In the present
case, we assume that P can be expressed as P = ABC, with A, B and C ≥ 0. Then
we can satisfy Eqn. 2.8 if we use the following acceptance rules:

acc(np → np + 1) = min{1, A}min{1, B}min{1, C}

acc(np + 1 → np) = min{1, 1

A
}min{1, 1

B
}min{1, 1

C
} (2.9)

In the special case that we consider in the present chapter where B and C are always
less than 1, the acceptance rule becomes

acc(np → np + 1) = min{1, A}BC

acc(np + 1 → np) = min{1, 1

A
}
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In our case, in Eqn. 2.3, we choose A, B, and C as

A =
exp[βµ]Qid

np + 1

B =
Qeff

Qid

C =
N
∏

l=1

〈exp[−βuint(il)]〉, (2.10)

where Qid is the partition function of a chain on an empty lattice. Since the ef-
fective partition function in solution is less than Qid, the second term is always less
than one. The same holds for the third term < exp[−βul(il)] >, as exp[−βul(il)]
can take only the values 0 or 1; therefore the average can never exceed one. The
acceptance rule for insertion or removal of a self avoiding polymer will then become:

acc(np → np + 1) = min{1, exp(βµ)V

np + 1
} Qeff

Qempty

N
∏

l=1

< exp[−βul(il)] >

acc(np + 1 → np) = min{1, np + 1

exp(βµ)V
}

Note that if we use the above expressions, we need not calculate any weights for
removing a particle. We therefore, will be able to save time, since calculating the
weights is the most time consuming part in the moves.
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3 A Step detection method for

molecular motors

3.1 Introduction

As mentioned in the section 1.2, molecular motors are biological machines that drive
active motion in living cells. They perform mechanical work using ATP (or a similar
energy-rich molecule) as a fuel. The energy that is needed for the power-stroke of the
molecular motor is released upon hydrolysis of the ATP. There exists a wide range
of molecular motors. Some of these transport a cargo from one point in the cell
to the other, others drive the relative motion of cytoskeletal filaments, a task that is
important for processes such as cell motility or muscle action. Different molecular
motors “walk” on different filaments: for example, the myosins that are responsible
for muscle action can move along actin filaments whilst kinesins are the motors that
transport cargo along microtubules.

An important characteristic of many of these motor proteins is that they move
effectively unidirectionally. The direction of motion is determined by the type of
motor and by the polarity of the filament on which they move. The hydrolysis of
ATP drives a sequence of configurational changes in the motor with the net effect
that the motor proteins make one step of fixed length for every ATP molecule that
they burn. The size of these steps is typically of the order of several nanometers and
the net speed of the motors is of the order of µm/sec. In most cases, the speed of the
motor depends on the force exerted by the load, but the step-size is constant.1

Experiments that provide information about the step-size and stepping rate of
molecular motors under different conditions provide crucial information about the
mechanism of the motor action and, indirectly, about the function of the motor. Ex-
periments that can track the position of individual molecules have made it possible to
track a single motor protein as it moves through the cell. However, such experiments
are notoriously difficult because molecular motors operate in an environment where
fluctuations due to thermal noise are significant. Therefore, optical-microscopy ex-

1Dynein, for example, is an exception since its step-size depends on the external load.
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3 A Step detection method for molecular motors

periments that follow the motion of a molecular motor along a track do not only
detect the underlying motion of the motor but also the thermal fluctuation of the op-
tical probe around this trajectory. As an illustration, Fig. 3.1 shows a sample trace
of the motion of kinesin as observed in the experiments of Ref. [28]. It should be
stressed that kinesin represents a favorable case as it typically travels for hundreds of
cycles along a microtubule without detaching. In contrast, other motor proteins, such
as myosin II, tend not to act alone but as part of a large number of similar motors:
every individual motor does detaches from the (actin) fiber after every single power
stroke. Such behavior makes it even harder to get the desired information from the
noisy trace of the motor. Yet, as can be seen in Fig. 3.1, even for the case of ki-
nesin, the level of noise is significant compared to the step-size of the motor. For this
reason, much attention has been paid to the development of analysis techniques to
extract information about the motion of molecular motors from the noisy traces that
are obtained in experiment. Below we briefly review the existing approaches and then
we present a different approach that makes it possible to extract information about
step-size and stepping frequency under conditions where the existing techniques are
either inaccurate or fail completely.

To extract the step-size and step frequency from noisy traces, such as the one
shown in Fig. 3.1, several step detection methods have been proposed in the litera-
ture [29, 30, 31, 32]. We briefly describe some of these methods in the last section of
this chapter. Here we simply refer to the method by their key characteristic: “t-test”
in Ref. [29], χ2-minimization for Ref. [30], velocity thresholding in Ref. [31] and
a Markovian-based approach in Ref. [32]. A common feature of all these schemes
is that their objective is to fit a specific “optimal” step pattern to the experimental
data. The methods of Refs. [29, 30, 31] use different techniques to decompose the
experimental data into pure noise and a noise-free stepping trace. Then, they extract
information about the underlying trace from the reduced noise-free trace. The per-
formance of all these fitting schemes strongly depends on the elimination of noise
from noise-free trace and their performance rapidly deteriorates as the level of noise
increases.

The key observation that underlies the approach that we propose here is the fol-
lowing: what we aim to extract is not the precise trajectory of the molecular motor,
but the parameters (step-size(s) and step frequency) that are intrinsic properties of the
molecular motor under the experimental conditions. There may be many step histo-
ries that fit the experimental data to within the experimental error and we argue that it
is then pointless to select one trajectory as the “true” motion of the motor and to dis-
card all others. Rather, we argue that is often better to extract the desired information
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Figure 3.1: Trace of kinesin along microtubules that is observed with a quadrant
detector under condition of very low ATP concentration. The step-size is reported to
be 8nm [28]. The fixed directionality of kinesin is toward the plus end of microtubule.
A detail of the experimental trace is shown on the right: it shows both the stepping
behavior and the noisiness of data.

from the set of possible trajectories.
To illustrate why it may be advantageous to consider sets of trajectories, we con-

sider a hypothetical situation where we have two sets of parameter values (e.g. two
values for step-size) that yield an equally good “optimal” fit to the experimental data,
yet differ in the number of good fits that are found. In this case a conventional
method will consider both sets of parameter values equally acceptable. However, the
number of good fits or, more precisely, the path integral of possible trajectories, is
a better indicator of the quality of the fit. Naively, one might think that it is simply
the number of acceptable trajectories that determines the goodness of fit. However,
as we shall argue below, a slightly more sophisticated criterion must be used. The
method based on the analysis of the properties of an “ensemble” of paths becomes
more relevant at the high level of noise where the single fit result becomes inaccurate.

In essence, our approach is Bayesian in nature, as it considers the probability that
a given set of parameters (e.g. step-size and jump frequency) are compatible with the
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3 A Step detection method for molecular motors

experimental data. In what follows we will exploit the analogy between stepping-
motor trajectories and realizations of a directed random walk. The quality of a fit is
related to the ‘free energy’ of the directed random walks in the landscape determined
by the experimental data. We can define the Hamiltonian of a specific random walk
y(t; p) in the presence of experimental data x(t) as:

H(y(t), {p}) ≡
∑

t

(x(t) − y(t; {p}))2,

where {p} denotes the set of parameters characterizing the random walk. If the sta-
tistical noise in the experimental data is denoted as σ2, we can define an inverse
‘temperature’ β ≡ 1/σ2. The “partition function” associated with the parameter set
{p} is then

Q({p}) ≡
∑

y(t;{p})

e−βH(y(t),{p})

As the number of trajectories that contribute to Q increases exponentially with the
length of the trace, special techniques are needed to evaluate Q. In what follows, we
will make use of “moment propagation”, a technique that makes it possible to perform
an exact, recursive enumeration of the weighted number of non-self-avoiding random
walks [33, 34, 35]. In the context of the present example, we limit the discussion
of moment propagation to the case of directed random walks. Moreover, we limit
ourselves to motors that never step backwards. This restriction is not essential but it
simplifies the subsequent discussion. However, we will show that the extension of
the method to other cases is relatively straightforward.

3.2 Analyzing artificial data

In order to develop a reliable test for the approach that we propose, it is useful to
work with artificial data, i.e. data that are generated by 1) assuming a particular step-
size and jump frequency for the molecular motor 2) generating a specific trajectory
for this motor with a probability that is determined by these parameters and then 3)
add artificial Gaussian noise to the trajectory to generate a trace that can be compared
to the experimental data. The reason why we perform tests on artificial data is that,
in that case, we know the properties of the underlying random walk and the added
noise and we can then unambiguously test how well our analysis method recovers the
underlying information about the step-size from the noisy data. Fig. 3.2 shows such
an artificially produced data set, which resembles molecular motor trace in position-
time (x, t) space ( similar to Fig. 3.1). Every point x(t) represents the measured
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3.2 Analyzing artificial data

displacement of the motor along one dimensional substrate at a certain time. We as-
sume that the experimental data set originates from a homogeneous Markov process.
By definition, a Markov process is a random memoryless process, i.e. the events that
take place at any time depend only on the state of the system at that point in time and
not explicitly on its earlier history.

The directional motion of a motor in time axis can be viewed as a “directed random
walk” in 1 + 1 dimensions. In the present case, these directions correspond to time
t and position x. The random walker in this 1 + 1D space always goes forward in
time. Such a random walk is called directed random walk (DRW). For simplicity,
we consider the case where the process underlying the directed random walk only
performs jumps in the +x-direction of a single, fixed size (e.g. kinesin [28]). In the
language of DRW this situation corresponds to a random-walker that can move only
forward in both the x and the t directions: a “unidirectional random walk” (URW).

Fig. 3.2 shows an example of an artificially generated set of N points ~x = (x0, x1,
. . . , xN−1). The data points correspond to the sum of a specific realization of a URW
of step-size ∆r (dashed curve) and the added noise. In the case of real experimental
data, the observer has no a priori knowledge of the underlying step-size ∆r and the
aim of the analysis is to obtain an estimate of this quantity. The simplest case to
consider is one where the stepping process is Markovian: At each time t the motor
may either stay at the same position or may make a step of fixed size ∆r where the
probability to make a step does not depend on its previous history. For simplicity,
we also assume that the hidden URW was sufficiently over-sampled upon acquisition
of the experimental data; this means that at most one step can occur between two
consecutive data points. This is not a crucial assumption and we will show later
that the method can be extended to the case of under-sampled data. Without loss
of generality, we measure time t in units of interval between the subsequent time
frames, i.e. t = {0, 1, 2, . . . N − 1} with N the maximum measurement time, and
we fix location of the first measured point at origin (x0 = 0)2.

For the set of artificial data in Fig. 3.2 the added noise to the underlying trace is
a white Gaussian noise with distribution G(0; σ), which means the distribution has
zero mean and constant standard deviation σ. As we mentioned earlier, the presence
of noise obscures the underlying URW. We assume that the magnitude of the noise
can be determined independently in the experiments (for instance, by measuring the
random, apparent displacements of a motor that is not stepping - for instance, for lack
of fuel.)

2To keep the notation simple, we drop the explicit dependence on the origin x0. However,
it should be borne in mind that, in practice, x0 should also be varied.
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Figure 3.2: (a) Position-time trace ~x = (x0, . . . , xt, . . . xN−1), t ∈ [0, N − 1], of an
artificially generated set of N = 40 points, which is a sum of a unidirectional random
walk (dashed curve) of step-size ∆r (see right-hand vertical axis) and white Gaussian
noise G(0, σ), σ/∆r = 0.5. A priori, the observer does not know the true step-size
∆r. In the text we consider calculations that compute the partition function of trial
URW’s for various step-sizes ∆. The left vertical axis indicates an example of the
step-size of the uni-directional random walk (URW). Only when ∆r equals a multiple
of ∆ will the horizontal stretches of the dashed curve fall in the horizontal (dotted)
lines of the “probe grid”.

The distance in time between subsequent data points defines the discretization ∆t
of the URW in the t direction. A random walk with step-size ∆, starting at the
origin, should then only visit the grid points of a lattice with spacings ∆t and ∆ in
respectively the time and the space directions. A random walk with added noise or
with a step-size ∆r 6= ∆ will, in general, not visit the grid points of the ∆t − ∆
lattice. The total number of URW’s with length t and step-size ∆ is denoted by Ω∆.
Note that most of these walks will, in general, be far removed from the data points.
In order to obtain a measure of the number of URW’s with step-size ∆ that are close
to the experimental data, we have to give a weight to every URW that is determined
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3.2 Analyzing artificial data

by its distance to the data points.
Now consider a particular trajectory ~y∆, ~y∆ = [y0∆, y1∆, . . . , yN−1∆].
How well this trajectory fits to the (synthetic) data depends on the positions and

the size of the steps and, of course, to the magnitude of the statistical noise in the
data. The deviation of a specific trajectory ~y∆ from the data points (denoted by ~x)
can be expressed as a ’Hamiltonian’

H(~x − ~y∆) ≡
∑

t

Ht,∆ =
∑

t

(xt − yt∆)2. (3.1)

The probability p(~x|~y∆) that the data points ~x are the result of an underlying URW
~y∆ plus Gaussian noise with variance σ is then proportional to a “Boltzmann weight”
p defined as:

p(~x|~y∆) ∝ exp(−βH(~x − ~y∆)) , (3.2)

where the ‘inverse temperature’ β is defined as β = 1/(2σ2). In general, the un-
derlying random walk will not start exactly at the position of the first data point.
We therefore define ∆0 as the displacement between the first data point and the trial
random walk. The likelihood that the observed experimental data ~x originates from
random walks on a lattice with parameters {∆, ∆0} is determined by the “free en-
ergy”

f(∆, ∆0) = − 1

N
ln Z(∆, ∆0), (3.3)

Z(∆, ∆0) =
∑

{y}

exp(−βH(~x − ~y∆)), (3.4)

where Z(∆, ∆0) is the partition function of trajectories in ensemble Ω∆, and summa-
tion is carried over all possible {~y∆} and the standard factor 1/N makes f(∆, ∆0)
intensive.

The following argument may clarify the relation between the “likelihood” of one
class of trajectories and the free energy: H(~x − ~y∆) is smallest for trajectories that
fit the data best. Therefore, an ensemble of URW’s with a large number of good fits
has a large “partition function” and hence a lower free energy. It would, however, be
incorrect to assume that the quality of a fit is determined only by the free energy. To
see this, consider a trial random walk with a very small step-size ∆ ¿ ∆r. Most of
these trial walks do not resemble the data set at all yet, because ∆ is so small, there
will be a very large number of trial walks that happen to be very close to the data. In
Sec. 3.4 we will discuss how to resolve this ambiguity. However, for the time being,
we concentrate on the calculation of the partition function Z by exact enumeration.
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3 A Step detection method for molecular motors

For all grids with different step-size ∆ we need to calculate the sum in Eqn. 3.4
considering all possible URW’s on the lattice that start from x0 = 0. For each trajec-
tory we calculate H(~x − ~y∆) using Eqn. 3.1. Note, that σ as it is defined in Eqn. 3.2
determines fluctuations of xt. Once we know the noise of the experimental data, we
can calculate β and hence exp(−β(xt − yt∆)2) for each point yt on the grid and
store it. Then for each trajectory y∆ we calculate H(~x − ~y∆). As the number of
possible walks (Ω) grows exponentially with the number of data points (N ), it is of
course impossible to perform the summation over paths ~y explicitly except for very
small N . Hence, it would seem that the computation of the sum in Eqn. 3.4 might be
a numerically intractable problem. Fortunately, explicit summation is not needed. In
the next section we show how a recursive algorithm, (moment propagation), allows
us to perform the required summation exactly as an O(N) operation.

3.3 Moment propagation in matrix representation

In the previous chapter, we introduced the moment-propagation technique as a con-
venient tool to calculate partition sums of non-self-avoiding random walks on lattice
without the need to store all the walks separately. We now apply the same technique
(suitably generalized) to the enumeration of the “partition function” of directed ran-
dom walks with a Hamiltonian that is determined by their distance from a given data
set.

Let us define a vector of weights ~w(t) = [w1(t), w2(t), . . . , wN (t)] for every time
t such that

~w(t + 1) = B̂(t)Ŝ ~w(t), (3.5)

where N × N matrices B̂ and Ŝ will shortly be introduced. As we assume that
a motor can make at most one jump in one time step, the (hypothetical) maximum
distance that a motor could move in N time steps of length ∆t is N × ∆. We need
therefore only consider URW’s on an N × N grid (strictly speaking, only the lower
triangular part). At a given time t, the data point that results from the experiment
(or, in the present case, from the synthetic data) is denoted by xt. Most likely, the
underlying random walk will lie close to this data point. However, we consider all
possible values of yt = ∆0 + j∆. The further point yt is removed from xt, the lower
is its Boltzmann weight. We introduce an N ×N dimensional, diagonal matrix B̂(t)
that contains the Boltzmann weights of deviations of all lattice nodes from xt at time
t:
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3.3 Moment propagation in matrix representation

Bij(t) = δij exp
(

−β(xt − (∆0 + j∆))2
)

, (3.6)

where δij denotes the Kronecker delta, {i, j} ∈ [1, N ] and ∆0 + j∆ is the position
of lattice node (t, j) on the grid of vertical step-size ∆ and offset ∆0 from the origin.
Note that typically only a few elements of B will differ significantly from zero. B̂ can
be computed explicitly as we know the experimental data ~x = (x0, x1, . . . , xN−1)
and σ, the variance of the noise. The propagation matrix Ŝ is a N ×N Jordan matrix
with eigenvalue 1, i.e.,

Ŝ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 . . .
1 1 0 0 . . .
0 1 1 0 . . .
...

...
...

...
...

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.7)

The explicit representation of Eqn. 3.5 is:

wi(t + 1) = Bij(t)Sjkwk(t) (3.8)

where the Einstein convention of summation over repeated indices is implied. Writ-
ing the Jordan matrix explicitly, and using the fact that B̂ is diagonal, we obtain:

wi(t + 1) = Bij(t)(wj(t) + wj−1(t)) (3.9)

= Bii(wi(t) + wi−1(t)), (3.10)

where Bii = exp
(

−β(xt − (∆0 + i∆))2
)

is the Boltzmann weight of node (t, i).
We can now interpret weights wi(t) as the partition function of directed walks that
end at node (t, i). The above equation implies that the total number of walks that end
at node (t + 1, i) is the sum of two parts: 1) those walks that end in (t, i) and then
continue to (t + 1, i) without a step in x direction, and 2) those walks that converge
on node (t, i−1) and then step to the node (t+1, i). The partition function Z(∆, ∆0)
is then expressed as

Z(∆, ∆0) = ~w(N + 1)B̂(N)Ŝ . . . B̂(2)ŜB̂(1)Ŝ ~w(0). (3.11)

Eqns. (3.5)-(3.11), together with the definition of ~w(t), initial condition ~w(0) =
(exp(−β∆0), . . . , 0, 0) and ~w(N +1) = (1, . . . , 1) completely specify the moment-
propagation algorithm.

As the Boltzmann weights Bij decay quickly when the distance of the lattice point
to the data point is significantly larger than σ, it is in practice sufficient to evaluate the
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3 A Step detection method for molecular motors

elements of B̂ only in a band around xt, for instance xt ± 10β∆2. Another practical
point to note is that Z is obtained by successive multiplications and additions. Due
to the repeated multiplications, the propagated numbers can grow or shrink exponen-
tially (in the present implementation, numbers tend to shrink). In order to prevent
numerical underflows we keep track of the largest element at every propagation step,
wmax(t), where wmax(t) is the maximum of the set [w1(t), w2(t), . . . , wN (t)]. This
element is then rescaled to one and all other elements of [w1(t), w2(t), . . . , wN (t)]
are multiplied with the same scaling factor. The value of scaling factor (or, more
precisely, its logarithm) is then used to compute the overall rescaling factor that must
be taken into account when computing the end result of the moment-propagation al-
gorithm. In this way, the algorithm can compute partition functions over a very wide
“dynamic range”.

Generalizations of the current method to the more complex symmetries of the un-
derlying random walks can be easily constructed via modification of ’propagation’
matrix Ŝ of Eqn. 3.7. For example, random walks with forward and backward steps
correspond to Ŝ with 1’s on its super- and sub-diagonal:

Ŝ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 . . .
1 1 1 0 . . .
0 1 1 1 . . .
...

...
...

...
...

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.12)

This class of random walks for example can represent stepping behavior of micro-
tubules, where both growth and shrinkage can occur. Another example is URW’s that
may contain double steps in a single time interval. In that case, Ŝ has two bands of
1’s below the diagonal. Such a formulation would be useful in cases where stepping
is under-sampled:

Ŝ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 0 . . .
1 1 0 0 0 . . .
1 1 1 0 0 . . .
0 1 1 1 0 . . .
...

...
...

...
...

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.13)

Another situation that occasionally has to be considered in practice is that the data
set is incomplete, i.e. that at certain times data points are missing, or more generally,
when the data are not equally spaced in time. In the case of missing data points, the
matrix B̂(t) is replaced by the identity matrix Î .
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Figure 3.3: Free energy f as a function of the dimensionless step-size ∆/∆r for three
independent artificially generated data sets with ∆0 = 0 and different noise levels
σ/∆r =

√
10/8 (I),

√
20/8 (II) and

√
50/8 (III). For clarity, the curves (II) and

(III) were shifted by 0.25 in vertical direction. Arrows indicate peaks at the correct
step-size ∆r and ∆r/2 The grey line corresponds to the least-square polynomial fit
fav.

3.4 Reference curves

Fig. 3.3 shows the free energy f(∆, ∆0) as a function of the dimensionless step-size
∆/∆r for a (synthetic) data set of N = 4000 points for three different values of σ
the amplitude of statistical noise. For simplicity, we have assumed that we know the
initial motor position in the underlying URW (in this case, ∆0 = 0). A pronounced
and sharp local minimum in the free energy can be seen (at least, in the low-noise
case) at ∆ = ∆r, i.e. at the correct step-size. As is to be expected, the minima
become less pronounced as the noise level increases. For the highest noise level, the
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3 A Step detection method for molecular motors

minimum is no longer distinguishable by eye. Interestingly, a secondary minimum
can be seen at ∆r/2, i.e. at half the real step-size. The presence of such a minimum
is not surprising: we have not made any a priori assumption of the average time
interval between successive steps. Hence, a trajectory with step-size ∆ can be fairly
well retraced by a trajectory with steps of ∆/2, provided that steps always bunch in
pairs around the position of the true steps in the original data. The fact that such
subsidiary minima can exist makes it important to have a procedure that will allow
us to distinguish between a physically meaningful fit and an “artificial” free-energy
minimum. The more so as Fig. 3.3 clearly shows that the absolute minimum in the
free energy is not related to the best choice of the step-size.

In order to extract information about the step-size from curves such as the ones
shown in Fig. 3.3, we need the tools to assess whether or not a given feature in the
free-energy curve is compatible with a particular step-size in the underlying random
walk. A way to do this is to define a proper “reference curve”. As we will shortly
see even for the perfect matching between hidden underlying URW and the probing
grids, i.e., ∆r = ∆ and ∆0 = 0, our method generates some non-zero free energy.
The value of this free energy is not constant and depends on ∆. Also it cannot be
obtained by simple scaling.

We therefore define a “reference curve” fref (∆, ∆0) as the free energy of a trace
where the step-size of the hidden underlying URW is equal to the spacing of the
probing grid. We argue ( and we will shortly show) that information we get from the
excess free energy fex = f − fref is more likely to be generated by the stepping
properties of the underlying walk, as fref has all the characteristics that comes from
the noise in the data or the roughness of the grid. When the free energy of the experi-
mental trace f is calculated on the “right” grid, the value of f should be close to fref

and, therefore, fex will be close to zero.
For every step-size ∆, we then would like to calculate the value of the reference

free energy fref (∆, 0) on the “right” grid, i.e. a grid that perfectly matches the un-
derlying data. We simply do this with the moment propagation method of Eqs. (3.5)-
(3.11), using a ’reference’ trace ~R(∆), which is a sum of the noise-free URWs of
step-size ∆ and Gaussian noise σ. This ~R(∆) should not be arbitrary, but should
resemble the experimental data ~x, e.g. in the least-square sense. For simplicity, in
the present analysis we pick up an arbitrary ~R(∆) which starts at origin and ends up
within ±∆ of xN−1, i.e., xN−1 − ∆ ≤ RN (∆) ≤ xN−1 + ∆. Fig. 3.4 shows the
reference free energy fref (∆, 0) for σ/∆r =

√
10/8. Note, that the level of noise in

this curve is almost constant, in contrast to the free energy profiles of Fig 3.3.
In order to use fref as a reference curve we need to calculate the average properties
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Figure 3.4: Reference free energy fref (∆, 0) for a σ =
√

10 (see text). Note that the
level of noise is almost constant in contrast to Fig. 3.3. Also see Fig. 3.5.
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Figure 3.5: The average reference free energy f̄ref (∆, 0) (data points) as a function of
step-size ∆ for σ =

√
10. The fitted dashed line is the least-square fit a + b exp(−cx),

a = 0.496 ± 0.001, b = −0.628 ± 0.001, c = −0.493 ± 0.001. The error-bars show the
value of σref calculated for each data point. The inset shows that σref increases for
the smaller step-sizes.
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of it, namely the mean value f̄ref and the standard deviation σref . We obtain the
average smooth curve f̄ref (∆, 0) via averaging over ensemble of { ~R(∆)} each starts
at origin and ends up within ±∆ of xN−1. All these traces have the same level of
noise, while the position of steps in the underlying URW may differ from each other.
Fig. 3.5 shows f̄ref as a function of the step-size. f̄ref increases at large step-sizes.
For large step-sizes (x À 1) the only significant contribution to fref (∆, 0) comes
from thermal wandering around perfect matching trajectory and f̄ref converges to
0.5. The error bars show the σref , the noisiness of the free energy curve. It seems
that the roughness of fref slightly decreases at larger step-sizes (See inset of Fig. 3.5).

In order to calculate fex, we approximate f̄ref by a simple functional form:

f̄ref (x, 0) = a + b exp (−cx) . (3.14)

that provides a good fit to the data. We use this fit to evaluate the excess free energy
fex(∆, 0) = f(∆, 0) − f̄ref (∆, 0) which is shown in Figs. 3.6 and 3.7 for two cases
where σ =

√
10 and σ =

√
70. The primary peak at ∆/∆r = 1 corresponds to the

correct step-size ∆ = ∆r = 8. As mentioned, the value of fex at the “true” peak
should be close to zero. We define a “confidence interval” equal to σref around the
line fex = 0. A step size ∆ is considered as a possible candidate when the value
of fex(∆) is closer than ±σref to the line fex = 0. In Figs. 3.6 and 3.7 the area
within the confidence interval is indicated by the shaded area. Fig. 3.6 shows that
the primary peak ∆/∆r = 1 locates in the confidence interval while the secondary
peak at the half step-size is characterized by the significantly larger value of fex.

Joint probabilities

When the signal-to-noise ratio is poor, the free energy curves may contain several
peaks that approach the reference free-energy curve to within the statistical error.
Even then it may still be possible to decide which peak is most likely to correspond
to the underlying step size. The reason is that we consider a situation where there
is a single underlying step-size. Hence, if one peak is “real” then the others are
necessarily “over tones” or they are due to statistical fluctuations. Let us consider
a specific case where we observe that the “measured” free energy is less than, say,
two standard deviations removed from the reference free energy for step-sizes ∆a

and ∆b. If the true step-size is equal to ∆a, then we know the reference free energy
at ∆a (denoted by fa(∆a)) and its variance. But we can also compute a different
reference free energy, namely the average free energy at step-size ∆b given that the
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Figure 3.6: Excess free energy fex = f(∆, 0) − f̄ref (∆, 0) as a function of the dimen-
sionless step-size ∆/∆r for σ/∆r =

√
10/8. The shaded area is the area of confidence
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3 A Step detection method for molecular motors

true step-size is ∆a (denoted by fa(∆b)) and, as before, we can compute the variance
of this quantity. Conversely, we can compute fb(∆a), the average free energy at
step-size ∆a given that the true step-size is ∆b, and its variance. In general, the
statistical fluctuation in fi(∆j) and fi(∆k) will be correlated and we should also
compute the cross correlations to construct an error ellipse. However, for the sake
of simplicity we assume that fluctuations in the reference free energy are Gaussian
and uncorrelated. It is then easy to compute the combine probability of observing
the measured free energies at ∆a and ∆b, both for the case where ∆a is the true
step-size (we denote this joint probability by Pa(∆a) × Pa(∆b)) and for the case
where the real step-size is ∆b (corresponding joint probability Pb(∆a) × Pb(∆b)).
The ratio R = {Pa(∆a) × Pa(∆b)}/{Pb(∆a) × Pb(∆b)} then determines which of
the two scenarios is more likely. Obviously, this procedure can be generalized to a
larger number of peaks, but it is unlikely that this will be very useful. The most likely
two-peak scenario is the one where we have a peak at ∆ and at ∆/2. The method
described above should be able to deal with that situation. The generalization to
correlated noise is straightforward. Later in this chapter we test the sensitivity of our
method using the joint probability ratio R.

3.5 Sensitivity

Overview of existing methods

Let us first briefly mention some of the existing step detection methods. These are
the “t-test” that has been described by Carter et al. [29], “velocity thresholding” as
described by Hua et al. [31], Wavelet transform multi-scale products [36, 37], and
χ2 minimization [30]. A recent study by Kalafut and Visscher [38] also based on χ2

minimization showed further improvement in the performance, and there are other
works by Milescu et al. [32] that assumes a Markovian model for the stepping.

In a recent review Carter et al. [39] have compared the performance of the first
four methods [29, 31, 36, 30]. Below, we briefly sketch the approach used in these
most widely-used methods:

The T-Test method compares N points after and N points before each data point,
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by introducing a t parameter:

t =
mafter − mbefore
√

σ2

before

N +
σ2

after

N

(3.15)

Where M is the mean and σ is the variance of each set. It is clear from the above
equation that t will be the maximum when an upward step occurs and is minimum
for a backward step. Steps are defined when the absolute value of t passes a threshold
value.

Velocity Thresholding transforms the motor trace to the velocity profile by look-
ing at different time frames. Steps are then defined when a velocity passes a certain
threshold.

The χ2 minimization algorithm gives the trace that has the lowest residual χ2

by fitting the traces with increasing number of steps.

Some of these methods need one or more parameters from the experimental results to
be able to correctly reproduce the trace. Different filters can be used to increase the
performance of these methods, where a filter replaces the value of each point with the
median or mean value of a certain window around that point. In their study Carter
et al. [39] have concluded that the χ2 minimization [30] method has a better perfor-
mance than others at high level of noise. For this reason we compare the technique
that we propose with χ2 minimization. Here we describe the χ2 minimization method
in more details and in the next subsection we compare our free energy method to this
method.

The χ2 minimization algorithm starts by fitting a trace with only one step to the
experimental data. The best fit is the one with the lowest χ2 and gives the position and
size of a step which most likely locates at one of the true steps of the underlying data.
Next the algorithm does exactly the same on each resulting plateau on the left side
and right side of the first step and finds the locations of new steps. This is continued
until only few data points are left for each steps. Fig. 3.8 (a)[30] shows the fitting
procedure. While in the beginning the traces under-fit the data, they start to over-fit
the data as the number of steps increases in the last iterations.

In order to refine the algorithm and evaluate the quality of each of the fitted traces
Ref. [30] introduces a so called S value. This value measures the difference between
the quality of a fit and its “counter-fit”. In order to get a counter-fit the same best
fit algorithm is performed with a difference that at each iteration after finding the
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3 A Step detection method for molecular motors

Figure 3.8: Step fitting procedure from Ref. [30]. a) Iterations of the step fitting
algorithm. The arrowheads show every new step that is added in each iteration. b)
A best-fit together with a counter-fit for a stepping data [30]. The lower curve shows
linear non-stepping data c) S parameter versus the relative number of fitted steps
from simulation results of Ref. [30]
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position of the new step, the original step locations on the plateau will be rejected.
The outcome is a trace in which all the step locations are misplaced. The quality of
this counter-fit and the best-fit thus differ strongly. The method uses this to measure
the quality of fits. The S parameter is then defined as the ratio of χ2 of the counter-fit
to the best-fit.

S =
χ2

counter−fit

χ2
best−fit

(3.16)

If there is severe over-fitting or under-fitting, or if the original data consists of non-
stepped trace, then S will be closer to 1. S will be maximum when the quality of fit is
the best. In their study, Kerssemaker et al. show that the value of the peak is roughly
given by 1+∆2/(4σ2) when the fit is optimum. Carter et al. [39] show that compared
to other algorithms the χ2 minimization has the best performance especially when the
signal-to-noise level (∆r/σ) approaches 1.6, the lowest level tested.

Sensitivity of free energy method

We have tested the sensitivity of our method on several sets of artificial data of
N = 4000 data points with different levels of noise. The underlying URWs were
generated from a Poisson distribution with the average time τ = 100 between each
two successive steps, and a fixed step-size ∆r = 8. We expect that at a sufficiently
high level of noise, the peak of the excess free energy will submerge in the noise of
the free energy profile.

For comparison, we applied the χ2 minimization algorithm to two of our artificial
data with level of noise ∆/σ = 2.52 and ∆/σ = 0.96. Figs. 3.9 and 3.10 show
S − 1 as a function of step-size for these two data sets. The arrow in the figures
show the position of the correct step-size. As is clear from the figures irrelevant
peaks already start to compete with the correct peak in the case of ∆/σ = 2.52.
These peaks become totally dominant at the larger level of noise ∆/σ = 0.96 as
is shown in Fig. 3.10. To compare to our algorithm we refer to Figs. 3.6 and 3.7
where we applied our free energy method to the very same artificial data sets that had
been used in Figs. 3.9 and 3.10. These results suggest that the free energy method
is more efficient than the method of Kerssemakers et al. which works well for the
signal-to-noise ratio down to ∆/σ ≈ 1.6.

In order to test the sensitivity of the algorithm we calculate the ratio R of the
joint probabilities for the most likely two-peak scenario where we have two peaks
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Figure 3.9: s-1 versus step-size for σ =
√

10 and ∆r = 8 ( ∆/σ = 2.52) from χ2

minimization method, the peak shows the best fit and the arrow shows the correct
value for the step-size. The correct peak already competes with other peaks.
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Figure 3.10: s-1 versus step-size for σ =
√

70 and ∆r = 8 ( ∆/σ = 0.96) from χ2

minimization method, the peak shows the best fit and the arrow shows the correct
value for the step-size. The peak at the correct step-size is not dominant.
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Table 3.1: R(∆r, 0.5∆r), the ratio between the likelihood of step-size ∆r to likelihood
of step-size ∆r/2 for several levels of noise.

∆/σ R(∆r, 0.5∆r)

2.52 1081

1.78 2.82 × 107

1.14 5.09
0.96 1.99
0.68 1.10

at ∆r and at ∆r/2. Table 3.1 shows the R(∆r, 0.5∆r) which is the ratio between
the likelihood of step-size ∆r to the likelihood of step-size ∆r/2 for several levels
of noise. Since we “know” the true step-size is ∆r we expect R to be larger than 1
when the noise level is sufficiently low. The results shown in table 3.1 suggest that
the joint probability argument correctly predicts the true step-size even at a very high
level of noise ∆/σ ≈ 1.0.

To Summarize, in this chapter we proposed an algorithm to estimate the most likely
step-size compatible with noisy experimental data on the motion of molecular motors
along linear “tracks”. Our method is based on the numerical estimate of the “free
energy” of an ensemble of directed random walks of different step sizes. We show
that the method is capable of detecting a single step size at a signal-to-noise ratio
that is significantly lower than the ones that can be studied using the χ2 minimization
[30] method. In the simple version presented in this thesis, the method that we use
is limited to processes with a single underlying step size and sign. In contrast, the
χ2 minimization [30] method can be used to analyze multiple step-sizes traces or
traces with forward or backward steps. This limitation of the present method is not
inherent in the approach. As we briefly discussed in section 3.3, our approach can be
generalized to more complex situations. The performance of all methods to analyze
stepping motor traces depends on the size of the experimental data set. All the results
that are reported in this chapter are based on data sets that contain N = 4000 data
points with, on average one hundred data points between successive steps. It should
be stressed that the comparison between the present approach and other methods may,
in principle, depend on the size of the data set and on the number of points per step.
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4 A Coarse-grained model for DNA

coated colloids

4.1 Introduction

The highly specific nature of complementary-strand binding in double-stranded (ds)
DNA offers many possibilities for the use of this biomolecule in micro- and nano-
technology. For example, colloidal particles coated with distinct species of short
(around 100 bases) single-stranded (ss) DNA (called spacers) can bind specifically
with each other via suitable DNA ‘linkers’ [7, 8, 9, 10]. These “suitable” linkers
are themselves ssDNA strands added to the solution. Such DNA-coated colloids
may offer a route to novel colloidal crystals [8, 10]. To make colloidal particles
crystallize is an interesting problem in its general form, since it is one of the promis-
ing ways to control the structure and therefore properties of materials. This is not
a new phenomenon for experimentalist: Without using any coating spacers or link-
ers, many particles do make ordered structure (as an example when the surrounding
solution evaporates). However, these self-Assembly of particles is very sensitive to
their chemical property of particles. The polydispersity in shape of the particles,
charge, and chemical structure of particles together with short range van der Waals
interactions rule the properties of the assembly. Practically these “unspecific” and un-
controllable interactions is one of the main challenges in controlling the structure of
self-assemblies. For this reason, the very “specific” nature of binding interactions in
DNA linkers becomes as a key. The four basic building blocks of DNA, i.e. the bases
adenine (A), cytosine (C), guanine (G), and thymine (T), placed along the backbone
of ssDNA strand, have a very specific interaction among themselves. According to
Watson-Crick model [40] the A groups can only bind to T groups while the C groups
can only bind to G. These base-pairing interactions makes a ssDNA strand bind to
its “complementary” strand and form a double-stranded DNA. Therefore, careful de-
signing of the sequences along the DNA strands, (in which one can safely ignore
partial binding and mismatches) can introduce a one-to-one interaction between “a”
ssDNA strand and its “only” complementary strand.

In experiments it is possible to attach these ssDNA strands to colloidal particles
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4 A Coarse-grained model for DNA coated colloids

(See section 4.2) and make them “sticky”. These sticky parts will interact with each
other in the same way that isolated ssDNA strands interact. Therefore ideally one can
introduce the same level of specificity between colloidal particles that are coated with
complementary strands of ssDNA. Importantly, the specific DNA-mediated interac-
tions may be made stronger than the non-specific interactions that normally dominate
aggregation and self-assembly in colloidal systems. Recent experimental studies on
gold nano-particles [5, 6] have successfully used short DNA strands to “direct” the
self-assembly of particles into a non-close packed crystalline structure. Nevertheless,
experiments that aim to achieve DNA-controlled self-assembly are very challenging
and our understanding of the factors that control DNA-mediated interactions between
colloids is still far from complete. One factor that plays a crucial, but incompletely
understood, role is the length of the DNA polymers that have been grafted onto the
individual colloids. Recent experiments on colloids coated with relatively long DNA
strands [41, 42] show that, depending on the length of the DNA, the colloids may
either assemble into finite, disordered clusters or into system spanning aggregates,
Other factors that play a key role in DNA-mediated self-assembly are the tempera-
ture [5, 6], the grafting density, and the ionic strength of the solvent [43]. Of course,
for experiments, the size of the colloid itself is an important variable because direct
optical imaging of large (micron-sized) colloids is straightforward, whereas nano-
colloidal assemblies must be probed either by X-ray scattering or by electron mi-
croscopy. In what follows, we shall focus on the behavior of micron-sized colloids
coated with DNA. To date, most of the experiments on such systems of large, DNA-
coated colloids have considered colloids coated with relatively short DNA - usually
with a contour length that was less than the persistence length of the DNA. Under
those circumstances, DNA behaves like a rod, rather than a polymer coil. How-
ever, the experiments of refs. [41, 42] focused on systems of colloids coated with
DNA’s that contained many thousands of base pairs and that behaved as a polymer
coil with a radius of gyration that was comparable to the size of the colloid. One
should expect that the use of long and very extensible DNA linkers between col-
loids will qualitatively change the way in which the colloids self-assemble. From a
theoretical perspective, the phase behavior of colloids coated with DNA coils was
considered by Tkachenko [44] who found that the combination of screened Coulomb
repulsion between the colloids and reversible, DNA-mediated attraction between par-
ticles coated with complementary DNA strands could lead to the formation of various
non-close-packed crystalline phases, such as for instance a diamond structure. The
confocal-microscopy studies of Schmatko et al. [42] on colloids coated with DNA
that had a radius of gyration similar to the colloid radius, showed that these colloids

48



4.2 Long DNA experiments

formed aggregates with considerable local compositional order (i.e. a given colloid
tended to be surrounded by colloids with complementary DNA coating) but no over-
all crystalline structure. was observed.

Here we present a simulation study of a model inspired by the system of colloids
coated with long complementary DNA’s studied in Ref. [42]. As the colloids studied
in the experiments are micron sized and contain of the order of 1010 atoms, whilst
every DNA strand contains many thousands of base pairs, it is obvious that a fully
atomistic simulation of the phase behavior is utterly unfeasible with existing (or even
foreseeable) computing resources. We therefore must construct a “coarse-grained”
model that can be studied by Monte Carlo simulation. In constructing this model, we
specifically use the fact that DNA molecules are very long. During the past decade,
Hansen, Louis, Bolhuis and Meijer have analyzed the problem of the description of
effective (coarse-grained) interactions between long polymer chains in a good sol-
vent (see e.g. Ref. [24]). A key result of this work is that such polymer chains
behave effectively as soft spheres. The strength of the effective interaction between
these soft spheres depends on concentration but in the low density regime that we
shall focus on, it is well described by a Gaussian repulsion with a strength of ap-
proximately 2kBT . Replacing the polymers in a molecular solvent by soft, repulsive
spheres in a uniform background constitutes a huge simplification of the model for
the polymers. Similarly, we will simplify the description of the colloids by assuming
that they behave as hard spheres. This approximation is justified for uncharged (or
strongly screened) colloids in a medium that matches the refractive index of the col-
loid. In the experiments, the second condition may not be perfectly satisfied and this
will result in certain differences between simulation and experiment to which we will
return later. In the remainder of the present chapter we first discuss the experiment of
Schmatko et al.[42]. Then we present our coarse-grained model and we discuss the
simulation techniques used in this study. Novel predictions about the phase behavior
of coated-colloids will be presented in the next chapter.

4.2 Long DNA experiments

Schmatko et al. [42] reported an experimental study of the aggregation of colloidal
particles that could be linked by hybridization of long strands of grafted dsDNA
that was functionalized by short, complementary ssDNA “sticky ends”. In this ex-
perimental work, the authors studied the aggregation of 1µm colloids bridged by
DNA with 32µm contour length, where the “contour length” is defined as the total
length of DNA strand along its backbone. In the experiments, two species of col-
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Figure 4.1: Schematic representation of colloid particle coated with ds λ-DNA through
Biotin-neutravidin connection.

loids with grafted double-stranded λ-DNA displaying short, complementary single-
stranded ‘overhangs’ as free binding-ends, were mixed. The λ-DNA is a long ds-
DNA which is predominantly circular at room temperature and has a contour length
of 16 µm (roughly 48,500 base pairs (bps)). Upon heating to 65◦C, the ds-DNA
breaks open and linearizes. Each of these linear ds-DNA is now terminated by two
complementary 12-base single strands that we call “sticky ends”. A schematic sum-
mary of the particle-preparation protocol is given in Fig. 4.1. In the experiments, two
populations of linear DNA were prepared. In each population, one sticky end was hy-
bridized and ligated to biotin 1. These two populations of DNA were then separately
mixed with neutravidin-coated green-fluorescent (‘A’ hereafter) and red-fluorescent
(‘B’ hereafter) polystyrene colloids (diameter 1 µm). Using dynamic light scattering
the authors of Ref. [42] estimated the radius of the linear λ-DNA coil to be roughly
800 nm .They also estimated that some 10 λ-DNA chains were grafted onto each
colloidal particle. Given the relative sizes of the DNA and particles, one would then
expect each colloidal particle to be surrounded by a “cloud” of grafted DNA. Subse-
quently, equal amounts of the complementary colloids were mixed, reaching a final
particle volume fraction of φ ≈ 0.004. The suspension was then loaded and sealed
into a sample chamber. After several hours, during which the DNA strands could start
to hybridize, some clusters consisting of around 10 particles had formed, mixed with
a significant number of smaller clusters. Summarized, the experiments of Schmatko

1Biotin is a water-solvable vitamin that has a high affinity for proteins named avidins, such
as neutravidin.
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Figure 4.2: Schematic representation of the hybridization reaction of two types of
particles (labeled as A and B) coated with long dsDNA chains. The short dark-
colored terminal parts of the chains are ssDNA threads which are complementary for
A and B type of colloids. Upon decreasing temperature the terminal parts of DNA
strands hybridize and introduce a physical attraction between colloids of different
type. Clustering of A-B particles have been observed in experiments because of this
hybridization of complementary end groups[42].

et al. [42] report the formation of stable, size-limited clusters of DNA-coated colloid.
These clusters have two main characteristics: One is that they fail to grow further
in size: they remain size-limited even after many days. Second, inside each cluster
the two species are surprisingly close together - in fact, many particle pairs appear
to be touching. This means although the DNA strands are very large (their size is
comparable with colloids), the two connected colloids stay very close together. This
suggests that the DNA strands get excluded from the space between colloids. More
discussions on the results and supporting theory can be found in Refs. [42, 45].

In a more recent experiment, Geerts et al.[41] studied the effects of the length of
dsDNA tethers on clustering of colloids. They considered three different cases, i.e.
very long (48,500 base pairs (bps)), intermediate but still long (7500 bps), and no
dsDNA. In the last case, the complementary ssDNA parts are directly grafted on to
the colloidal particles. They found system-spanning clusters of coated colloids even
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in the intermediate regime.

4.3 The model

The coarse-grained model that is used in our simulations is meant to capture the
main characteristics of the experimental system described in the previous section. In
general, the system can be categorized as a mixture of colloids and grafted polymers
with “sticky” ends. Here, we list some of the important characteristics of the system:

• - The system consists of two types of colloids. Labelled as A and B
(equivalent to the green and red fluorescent labels in the experiment). Colloids
of different species attract each other after hybridization occurs between their
complementary polymer tethers. Colloids of the same kind only experience
repulsion. It is an important characteristic of the system that differences in
interactions between the colloids are only due to the difference in DNA coating
and not due to differences in size or shape.

• - The DNA-strands are long. As we will discuss in detail in the following
section, we model this DNA strand as “soft” particle with an effective size
Rg, where Rg is the radius of gyration of the DNA molecule. We therefore,
characterize a DNA chain only by the position of its center of mass.

• - The hybridization reaction is specific and reversible, and its de-
gree of reversibility depends on temperature. This comes from the fact that the
sticky ends of polymers molecules can bind and unbind only to their comple-
mentary partners.

The model that we use takes the characteristics listed above into account. We
consider a binary mixture of Nc hard spheres (colloids) of type A or B, each covered
with n identical DNA strands. In this model polymers are permanently tethered to the
colloids and there are no free polymers in the system . Therefore, the total number
of DNA strands is Np = nNc. For the sake of simplicity, we assume at this stage,
that the number of DNA’s per colloid is always exactly n. In experiments, it is likely
that the number will fluctuate. Although it would be straightforward to generalize the
model to take fluctuations in n into account, we start here with the simplest case, viz.
fixed n.

For the Monte Carlo simulations we introduce two types of moves: first of all, we
perform normal Monte Carlo trial moves that attempt change the center-or-mass posi-
tion of either the colloids or the polymers. In addition, we implement reaction moves
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that simulate the hybridization and dehybridization of the complementary DNA’s that
are grafted to different colloids. The schematic representation of a hybridization re-
action is described in Fig. 4.2, and a cartoon of soft sphere picture representation is
presented in Fig. 4.3.

Now that we have specified the components in our coarse-grained model, we still
have to specify their interactions. One part is straightforward: we model the inter-
actions between the bare colloids assuming that these behave as hard spheres. The
interaction between the polymers is more subtle: the soft-colloid picture for poly-
mers in a good solvent [24] was developed for polymers that are not tethered to a
colloid, nor for the situation where the polymers form a bridge between two colloids.
For the present, purely exploratory model we make the simplest possible assumption,
namely that the interaction between tethered polymers is the same as that between
free polymers. In addition, we assume that we can always use the low-density limit
for the effective polymer-polymer interaction potential. Finally, we assume that, al-
though the colloids repel the polymers (see below), they do not change the interaction
between the polymers. These assumptions are the simplest ones that one could make.
They are almost certainly an oversimplification. We speculate that a more quantitative
description of the polymer-polymer interactions will affect the quantitative, but not
the qualitative aspects of the behavior that we observe in our simulations. Whether
this speculation is justified remains to be seen.

Of course, the “soft-colloid” picture for polymers does not account for the hy-
bridization of sticky ends. In our model, we will assume that the sticky end of a
polymer is bound harmonically to the center of mass of the polymer, but does not
otherwise affect the properties of that polymer. Similarly, we will assume that the
end of the polymer that is grafted to the colloid is also harmonically bound to the
center of mass.

In the rest of this section we discuss in details the “effective” pair-potentials and
the Monte Carlo reaction moves for tethered polymers in their ”center of mass” rep-
resentation.

4.4 Pair-potentials for grafted, sticky polymers

The soft picture model for polymer chains has been already discussed in literature
[24, 46]. Bolhuis et al.[24] studied the effective interactions in dilute or semi-dilute
solutions of polymer chains. As a part of their work, they proposed effective pair-
potentials between centers of mass of two polymer chains, as well as an effective
form of the interaction between a polymer chain and a flat, hard wall. Pierleoni et
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Figure 4.3: Soft picture representation for long polymer coil. Dark-color spheres
represent hard colloids and light-color ones are the soft penetrable spheres representing
polymer chains.

al. [46] studied pair-potentials for block copolymers in the blob picture. In the blob
picture [15] a strand of long polymer is represented as a string of blobs. Each blob
then represents part of the chain. Pierleoni et al. calculated the effective interactions
for tethered and untethered blobs in such a chain. Both studies are relevant to the
problem of DNA-coated colloids: One studies the pair-potential for free polymers,
while the other studies the effect of tethering. The approach that we take here is more
simplistic than the multi-blob picture proposed in Ref. [46]: we approximate a grafted
polymer as a single blob. Again, it is obvious that a more sophisticated description is
possible (at a cost) and would certainly be called for in situations where the grafting
density is high. However, as the present model is meant to be a minimal model, we
limit ourselves to the simplest possible description.

Consider the zero density limit of DNA-coated colloid system, in which we have
only two hard colloids each coated with a single DNA strand with complementary
ends. To stay close to the experimental model presented in the previous section let us
assume that the DNA strands are sufficiently long so that we can safely use the soft
picture representation. Now the following interactions have to be considered:

1. interaction between two hard colloids

2. interaction between two polymers
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3. interaction between a polymer and a colloid

As mentioned above, we assume the bare colloid-colloid interaction Vc−c to be a hard
core interaction that suppresses any overlaps between colloids. This will be the same
between all colloids and does not depend on their species:

Vc−c(r) =

{

∞ if r ≤ 2rcol

0 otherwise
(4.1)

where r is center-center distance and rcol is the radius of colloids. A and B colloids
are assumed to be identical in size.

Within the soft-colloid picture [24], the pair-potential Vp−p between the centers
of mass of two free polymers in a good solvent can be described to a very good
approximation by a Gaussian model given by:

Vp−p(r) ≈ 2kBT exp

[

−0.7(
r

Rg
)2
]

. (4.2)

In their study, Bolhuis et al. show that Vp−p is transferable and, as long as the concen-
tration of the polymers is well below the overlap concentration, Vp−p can be assumed
to be constant. However, in our model DNA strands are permanently connected to
the colloidal spheres with one end and they may bind to another DNA strand with the
other end when hybridization occurs.

This tethering between particles modifies the pair-interactions. First, let us look at
the effect of hybridization: When two DNA strand hybridize they lose some degree
of freedom because of the constraint on their end points. This loss in entropy intro-
duces an attractive pair-interaction between two polymers. For two ideal chains this
interaction takes the form of an harmonic oscillator which is a quadratic function of
the end to end separation.

It is, of course, not a priori obvious that one can assume the additivity of the short-
ranged repulsion between two polymers and the entropic attraction due to bond for-
mation. However, support for this conjecture comes from the work of Ref. [46] that
shows that such additivity is reasonably well satisfied in a close related model.

In what follows, we therefore assume the following expression for the coarse-
grained interaction between the polymeric chains:

• The pair-interaction between two polymers that are not connected to each other
is assumed to be of the form Vp−p(r) (eqn. 4.2).
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• The pair-interaction between two polymers that are connected end-to-end is as-
sumed to be of the form Vp−p(r)+Vho(r), where Vho has the form of harmonic
oscillator.

Let us now look at the third category of interactions: Hard spheres and polymers.
In general, in the studies of colloid-polymer mixture, two limits of size ratios are
mostly discussed. One is the so-called colloid limit which includes large colloids and
small polymers with a radius of gyration much smaller than radius of the colloid. In
this limit the pair-interaction between a polymer and a colloid can be related to the in-
teraction between a polymer and a wall using the Derjaguin approximation [47]. The
opposite limit, which is sometimes referred to as the protein limit, is obtained when
the colloids are much smaller than polymer chains. In an extreme limit of this case
the interaction between the colloid and the polymer should vanish as the radius of the
colloid goes to zero. The most interesting case for us, however, is the intermediate
regime in which the radius of polymer and the colloid are comparable. Bolhuis et
al. [24] present effective pair-potential interactions of a free polymer chain close to a
hard sphere for one size ratio in the intermediate regime. Pelissetto and Hansen [48]
carried out lattice Monte Carlo simulation for a wide range of size ratios. In part of
their studies they present the effective pair-potential in the infinite-dilution limit in an
athermal colloid polymer mixture. They determine the effective two component pair-
potential between centers of mass of an isolated polymer on lattice and a hard colloid
in different limits where RC/Rg = 0.02−10. However, unlike the polymer-polymer
interactions which has effectively a Gaussian form, polymer-colloid interactions have
not similarly been expressed in a closed form. Even for the case of ideal polymers,
the pair-potentials are not known analytically in the center of mass representation.
Moreover, “tethering” also plays a role here: In our model, DNA strands are perma-
nently connected to the surface of hard colloidal spheres with one of their end groups.
This will introduce an attractive harmonic spring interaction between the colloid and
the polymer and, as we indicated above, the additivity of the short range repulsive
interaction and the long range attractive part need not hold.

The aim of the present study is not to perform an exhaustive study of the inter-
actions between colloids and tethered polymers as a function of size ratio. For the
present work, a workable description of the polymer colloid interaction suffices. In
order to achieve such a description for the polymer-colloid systems that we study, we
have to collect numerical data that allow us to construct an effective pair potential.
To this end we have performed Monte Carlo simulations similar to those of Pelissetto
[48] of tethered polymer-colloid pairs at infinite dilution.
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4.4.1 Colloid - polymer interaction at zero density

The first step towards the construction of transferable polymer-colloid potentials is
to compute the interaction between a hard colloid and a free polymer chain. From
these simulations we can calculate the zero-density limit of the potential of mean
force that acts between the polymer and the colloid. Next, we report results for single
polymers tethered to the surface of the sphere with one end. We compare these two
pair-potentials to check the additivity, and the effects of tethering.

In the zero density limit the potential of mean force that we derive from the polymer-
colloid radial distribution function g(r), is equal to the effective pair potential U(r).

U(r)

kBT
= − ln g(r). (4.3)

Let us first consider the end-to-end distribution of ideal chains. In the regime where
the end-to- end distance is much smaller than the full extension of the ideal chain
the Gaussian approximation is valid for the end-end distribution [49]. This will im-
mediately give the quadratic spring form for the free energy of the chain at fixed
elongation

U(r) = −3kBT

2N

(r

b

)2
, (4.4)

where N is the number of monomers in the chain and b is size of the monomer. For
an ideal chain the mean-square radius of gyration is given by:

〈R2
g〉 =

Nb2

6
, (4.5)

and, therefore we can rewrite U(r) as

U(r) = −kBT

4

(

r

Rg

)2

. (4.6)

If we express all distances in units Rg, the coefficient κ = 0.5kBT is the “entropic
spring constant” of an ideal chain.

As can be seen from Eqn. 4.6 the spring constant of an ideal linear spring is of the
order of kBT . For other situations than the end-to-end distance of an ideal chain (e.g.
in the case of the center-of-mass distribution of two end-connected polymers) we
expect that the interaction potential is still to a good approximation harmonic. How-
ever, the spring constant will in general be different from the one given in eqn. 4.4. In
other words, the value of the spring constant is one of the control parameters of the
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Figure 4.4: Effective Colloid-polymer pair-potential from lattice simulations for a free
polymer next to a sphere with radius rc5. Different curves correspond to different
length l of the polymer. Radius of Gyration of polymers are between Rg/rc = 0.49−
1.27 for l = 20 − 100. The dashed lines indicate the point where the polymer center
of mass penetrates the hard colloid. Fitting the curves to a single Gaussian we find
out that the value at full overlap decreases as the length of the polymer increases.

system. It affects the strength of the attractive interaction between bound polymers.
For linear polymers, the size of the polymer and the strength of the entropic spring
constant are directly coupled. However, polymers with a different topology (e.g. star
polymers) will have a different value of κ for the same value of Rg. In the remainder
of this chapter we chose to work with linear chains.

To compute the effective interaction between a linear polymer (bound and un-
bound) and a hard colloid, we carried out Monte Carlo simulations for linear chains
of length between l = 20 up to l = 100 lattice spacings, using Configurational Bias
scheme on lattice [11]. The length of the box was chosen to be Lbox = 100 and
periodic boundary conditions are applied to all the directions. In this lattice repre-
sentation, the sphere is defined as all the points that are closer to the center than the
radius of the colloid, rc = 5, lattice spacings. These points are inaccessible to the
monomers along the polymer chain. We sample a configuration every 1000 Monte
Carlo moves and calculate the distribution function of the polymer center of mass as
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4.4 Pair-potentials for grafted, sticky polymers

well as the radius of gyration. In the same way as Eqn. 4.3 the pair potential between
the sphere and the polymer is related to center-center distribution function of colloid
and polymer. We study two cases: a free polymer next to a sphere and a polymer that
is tethered with one end point to the surface of the sphere. In this case, we fix the
first monomeric unit of the polymer (i.e the end that is tethered) on one of the empty
lattice sites in the first layer around the hard sphere.

Fig. 4.4 shows the computed pair-potentials that act between a hard colloid and an
unbound polymer, as a function of the radius of gyration of the polymer (at constant
colloid size). The minimum size ratio is Rg/rc = 0.49 for a polymer of contour
length 20 and the maximum size ratio is Rg/rc = 1.27 for a polymer of length 100.
The distances in each profile are scaled with the radius of gyration of the polymer
in solution. The results of this simulation show that even for the smallest size ratio
Rg/rc = 0.49 the center of mass of the polymer can penetrate the colloid to some
extent (something that is clearly impossible for a polymer approach a hard wall). In
the figure, the position of the colloid surface is indicated for each l. As the length
of polymer increases the value of the potential at surface decreases. This is not sur-
prising because long polymers can wrap arround the colloid. Our results are qual-
itatively in agreement with Pelissetto’s [48], however, in our simulation polymer’s
length are much shorter than the extensive work of Pelissetto. Next, we consider a
polymer chain of length l = 100, which is tethered to a colloid with rc = 5 via
one end group. As Fig. 4.5 shows, the pair-potential Vp−c in this case is repulsive
at short distances and has a quadratic attractive spring-like form at longer separa-
tions. This figure allows us to test to what extent the polymer colloid potential can
be written as a sum of a harmonic attraction and a Gaussian repulsion (Eqn. 4.2).
For comparison, Fig. 4.5 also shows the repulsive colloid-polymer pair potential for
an unbound polymer. When we subtract the V free

p−c for free polymer from V bound
p−c for

bound polymer, we obtain a function that, if the interactions are additive, should be a
quadratic function of the distance between the polymer center and the colloid surface.
We have verified this for two of size ratios Rg/rc = 1.27 and Rg/rc = 0.838, fitting
V bound

p−c −V free
p−c to a quadratic function. The results of this comparisons indicates that,

at least for the cases that we studied, the pair-potentials are to a good approximation
additive. We do not wish to imply that additivity will hold for all polymer-colloid
size ratios (almost certainly, it does not). However, for the present study that focuses
on polymer-colloid systems with size ratios similar to those used in the experiments
of refs. [42, 41], additivity seems to be a reasonable assumption. We note that we
cannot easily extract the value of the polymer-colloid pair potential at r = 0 from the
data shown in Fig. 4.4. For the subsequent simulations, this point is of minor impor-
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Figure 4.5: An example of a typical colloid-polymer pair-potential obtained by lattice
simulations for a bound chain and a free chain. Distance r is the center-center distance;
size ratio is given by Rg/rc = 1.27 for a polymer of length l = 100.

tance, as the main point is that the interaction becomes strongly repulsive at small r.
Configurations with r close to zero will therefore be rarely sampled. For the coarse-
grained simulations reported in the next section, we fit the repulsive polymer-colloid
potential to a Gaussian form

Vcp(r) ≈ a exp(−r2/c).

4.5 Reaction moves

4.5.1 Hybridization equilibrium of DNA

Having discussed pair-potentials, we now need to develop a Monte-Carlo scheme that
combines reaction moves, during which polymers bind or unbind, with displacement
moves. Colloids of different types can be linked if their respective DNA strands
hybridize. This can be described by a two state model for a dimerization reaction in a
solution of short ssDNA segments A and B that can hybridize to form a short dsDNA
strand AB:

A + B ­ AB (4.7)
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4.5 Reaction moves

Later on, we will identify the two reactant “molecules” A and B as the two com-
plementary single-stranded ends of a long DNA chain. The forward move represents
hybridization leading to the product AB which is a double-stranded DNA chain. The
backward move brings the system back to the random coil state of two single stranded
chains. This two-state model is often used to estimate the temperature-concentration
dependence of the dissociation of short, double-stranded DNA molecules into free
ssDNA chains. It has been suggested [50] that this dimerization model provides a
reasonable approximation of the melting temperature even when the duplex have a
non-two-state transition, when DNA molecules form alternative conformations be-
tween duplex to random coil transition.

In the two-state model the condition for chemical equilibrium, the chemical poten-
tials of the reacting species should satisfy

µA + µB = µAB (4.8)

If we assume that both the ssDNA and the dsNDA solutions are ideal we can relate
the equilibrium constant for the hybridization reaction to the partition functions of
reactants and products. For species x ( x = A, B, or AB) the partition function is
given by

Qx =
V N

N !

qN
int(x)

Λ3N
x

, (4.9)

where qint(x) is the contribution to the partition function of x due to all internal
degrees of freedom. Note that the thermal De Broglie wavelength Λx depends on the
mass of species x. The equilibrium condition can be rewritten as

(

ρAB

ρAρB

)

=
qint(AB)/Λ3

AB

(qint(A)qint(B)) /(Λ3
AΛ3

B)
, (4.10)

where ρx is the number density of species x. To compare with experiments, it is
conventional to express the equilibrium constants such that the concentrations can be
expressed in mol/liter:

[AB]

[A][B]
= K, (4.11)

where K is the equilibrium constant of the A-B dimerization reaction. If [x] is the
concentration in mol/liter, then [x] = ρx/ρ0, where ρ0 is the “standard” number
density corresponding to one mol/liter, i.e. 6.022 × 1026 molecules per cubic meter.
In this way we can relate the equilibrium constant to number densities via

(

ρAB

ρAρB

)

=
K

ρ0
. (4.12)
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This step is necessary because, for a dimerization reaction, the equilibrium constant
is not dimensionless. Using equation 4.10 we then obtain,

qint(AB)/Λ3
AB

qint(A) qint(B)/(Λ3
A Λ3

B)
=

K

ρ0
(4.13)

Next, we will use the above relations to arrive at an expression for the probability of
dimerization of to long chain molecules terminated by reactive A (B) ends. For the
reaction algorithm of the Monte Carlo scheme we need the dimerization probability
of two ssDNA chains. Consider the situation where A and B are the endpoints of
DNA chains with centers of mass located at RA and RB respectively. We denote the
center-to-center distance RA −RB by RAB . We assume, as before, that the polymer
end points are harmonically bound to the center of mass of the polymer.

Initially, we consider an isolated A−B pair. This pair can either (i which case the
two centers of mass are linked) or they can be unbound, in which case both the A and
and the B and are distributed around their respective center of mass. The distribution
is Gaussian. Let us denote the probability that the A−B pair is hybridized by α (the
probability that the pair is not hybridized is then 1 − α). The ratio α/(1 − α) can be
expressed as a ratio of partition functions:

α(RAB)

1 − α(RAB)
=

Qbound

Qunbound
, (4.14)

where Qbound (Qunbound) denotes the intramolecular partition function of the bound
(unbound) state. If we use the explicit expressions for these partition functions, we
obtain:

α(RAB)

1 − α(RAB)
=

=

∫

dr exp(−1
2κ(r − RA)2) exp(−1

2κ(r − RB)2)qint(AB)/Λ3
AB

∫

dr exp(−1
2κ(r − RA)2)

∫

dr exp(−1
2κ(r − RB)2qint(A) qint(B)/(Λ3

A Λ3
B)

=
K/ρ0

∫

dr exp(−1
2κ(r − RA)2) exp(−1

2κ(r − RB)2)
∫

dr exp(−1
2κ(r − RA)2)

∫

dr exp(−1
2κ(r − RB)2)

=
K

ρ0
exp

(

−1

4
κR2

AB

)

(π/κ)3/2(κ/2π)3

=
K

ρ0
exp(−1

4
κR2

AB)(κ/4π)3/2 ≡ f(RAB) ,

(4.15)

62



4.5 Reaction moves

where, in the last two lines, we have used eqn. 4.13 that relates the intramolecular
partition functions of the reactants and products to the (known) equilibrium constant
K of the dimerization reaction of the free A and B segments. Eqn. 4.15 shows
that the dimerization probability depends not only on the equilibrium constant K,
but also on distance RAB between the centers of the two polymers chains. defines
an effective reaction constant which depends The last line of eqn. 4.15 defines the
function f(RAB). When R)AB , κ and K are given, we can compute f(RAB) and
thus α(RAB):

α(RAB) =
f(RAB)

1 + f(RAB)
. (4.16)

α(RAB) allows us to determine the probability of dimerizing two ssDNA of type
A and B at a certain distance RAB , assuming that we have only one single dsDNA
chain. However, in a solution of coated colloids many DNA strands compete with
each other to bind to their complementary strands. In general, there can be many
candidates ssDNA of type A that could bind to a given ssDNA of type B. Therefore,
we have to compute the partition functions for all possible hybridization states and,
from these, determine the relative binding probabilities of all the candidates. The
general expression for the probability that end group A will bind to the i-th end
group op type B is then of the form:

αi =
K/ρ0 exp(−1

4κR2
ABi

)(π/κ)3/2

∑

i K/ρ0 exp(−1
4κR2

ABi
)(π/κ)3/2 + (κ/2π)3

(4.17)

In the Monte Carlo reaction moves, we first identify all possible hybridization part-
ners of a particular A (or B) segment. The probability that A (resp. B) then binds
to the i-th potential partners is then given by αi. In the next sections we discuss this
algorithm in more detail.

4.5.2 Reaction algorithm

Consider a system of chain molecules with “sticky” ends of type A B. A and B can
dimerize to form AB. We use the notation:

QAi,Bj
≡ (

κ

4π
)

3

2

K

ρ0
exp(−κ

4
R2

Ai,Bj
), (4.18)

where RAi,Bj
is the distance between particle Ai and particle Bj . We use the follow-

ing algorithm to allow bonds to from or to break:

1. Choose a reactive end group i at random (bound or unbound).
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4 A Coarse-grained model for DNA coated colloids

2. . Calculate Qij for all possible complementary groups j that can bind to i, and
are within a cutoff Rcut. If i was initially bound to a specific group j ′, then j′

is included in this list.

3. Calculate Si as the sum of all the calculated Qij :

Sij =
∑

j

Qij .

4. either bind end group i to one of the complementary end groups j with proba-
bility Qij/(1 + Si) or leave i unbound with a probability 1/(1 + Si).

This algorithm satisfies detailed balance.
For DNA-coated colloid system, once we know the sequence of ssDNA comple-

mentary parts we can estimate the hybridization free energy ∆Ghyb (see appendix
4.6). K then relates to ∆Ghyb through Van’t Hoff relation:

K = exp

(

−∆Ghyb

kBT

)

. (4.19)

Eqn. 4.18 implies that two DNA strands have a higher probability to bind when they
are close to each other.

4.6 Appendix A : Thermodynamics of DNA

base-pairing interactions

Under experimental conditions, the hybridization free energy depends on the proper-
ties of the solution, temperature, and most importantly on the sequence and length of
the DNA strands. Having the sequence of a double stranded DNA, one can estimate
the energetic and entropic cost of melting of the whole strand. Early work of Santalu-
cia [50] provided a unified description of the thermodynamic parameters based on a
nearest neighbor (n-n) model. Markham and Zuker [51] developed a freely available
package called “Hybrid” based on more up-to-date thermodynamic parameters. The
package is available on the DINAMelt web server [52]. The method is commonly
used to predict the melting temperature of DNA and RNA strands. Here we briefly
discuss the principles of the method:

Consider a hybridized dsDNA, with one strand made of a sequence of the four
bases “A”, “C”, “G”, and “T” as monomers. Assume that the other strand has the
complementary sequence such that it can bind to the first one without any mismatch
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4.6 Appendix A : Thermodynamics of DNA base-pairing interactions

and that a bond has been formed between each pair of complementary bases. Both
the energetic cost and the entropic cost (or rather: benefit) of breaking each of these
bonds depends on the type of the monomers, their place along the strand, the direction
of the strand, and their neighboring monomers. The free energy difference between
bound and unbound state of two complementary strands is denoted as:

∆G

RT
=

∆H

RT
− ∆S

R
(4.20)

Table 4.1: Unified oligonucleotide ∆H◦ and ∆S◦ NN parameters in 1M NaCl.

∆H◦ ∆S◦

Sequence kcol/mol cal/k◦mol

AA/T −7.9 −22.2
AT/TA −7.2 −20.4
TA/AT −7.2 −21.3
CA/GT −8.5 −22.7
GT/CA −8.4 −22.4
CT/GA −7.8 −21.0
GA/CT −8.2 −22.2
CG/GC −10.6 −27.2
GC/CG −9.8 −24.4
GG/CC −8.0 −19.9

init. w/term. G.C 0.1 −2.8
init. w/term. AT 2.3 4.1

Symmetry correction 0 −1.4

where ∆G is the difference in free energy, ∆H is the difference in enthalpy, and
∆S is the difference in entropy between the hybridized and the random coil state and
R is the gas constant. Ref. [50] provides estimates for ∆H◦ and ∆S◦. These values
have been determined from melting studies of an appropriately chosen set of dsDNA
chains. Table 4.1 shows the value of each parameter at a fixed temperature and in
a standard solution. The first column in the table includes all the permutations of
two neighboring base-pairs. Note that among all the permutations there are only 10
unique combination of base-pairs next to each other. These are (5′ − 3′)2 AA = TT ,

2The polarities of two strands in dsDNA run antiparallel to each other. This polarity is
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4 A Coarse-grained model for DNA coated colloids

AG = CT , AC = GT , GA = TC, GG = CC, TG = CA, CG, GC, AT , and
TA.

For a given sequence of dsDNA one can get the hybridization free energy associ-
ated with the complete melting of the strand. Further corrections should be applied
regarding changes in temperature and solution. For more information see Ref. [50]
and [51]. On DINAMelt web server [52] the melting properties of a given DNA
strand can be computed from the sequence information .

The probability of forming a bond between two coated colloids depends not only
on ∆G but also on the geometry of the system and on the DNA concentration in
the solution. Parameters such as length and stiffness of the DNA strands as well as
the shape of the colloidal particles change the effective DNA concentration and the
average number of available DNA strands. All these parameters together define an
“effective” binding free energy, which might differ largely from the hybridization
energy. In simulation studies, this effective binding energy should be determined in
order to be able to perform a valid hybridization moves. Different strategies can be
taken into account depending on the way we model the coated colloids. For example
Licata and Tkachenko [53] presented a statistical- mechanical model for two-particle
binding energy for a model of coated-colloids with complementary “rigid” linkers
which is then different than our soft picture model for long felxible linkers that has
been discussed in section 4.5.1.

indicated by referring to one end as the 3′ end and the other as 5′ end [16]
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5 Liquid - vapor transition for DNA

coated colloids

5.1 Introduction

In 1957 Alder and Wood demonstrated in numerical simulations that hard spheres
could freeze [3, 4]. This work created quite a stir [54] because it showed a crystal
phase could have a higher entropy than the liquid phase at the same density. This ran
against the conventional wisdom that attraction was needed to cause crystallization
of simple liquids. However, Onsager [2] had already shown in the 1940’s that a sys-
tem of slender, hard rods could increase its entropy by undergoing an orientational
ordering transition. Since then, many other “entropy-driven” phase transitions have
been identified (see, e.g. [55]). For instance, a mixture of hard colloids and non-
adsorbing polymers can undergo a liquid-vapor transition because, upon condensa-
tion, the loss in entropy of the colloids is compensated by the gain in entropy of the
polymers [56, 57]. Yet, this transition is not as surprising as it may seem because, to
a first approximation, the polymers induce an attractive pair interaction between the
colloids. This makes the mixture of purely repulsive polymers and colloids equiva-
lent to an effective one-component system of colloids with mutual attraction. It is this
effective attraction that drives the vapor-liquid condensation. More surprising was a
theoretical study by Zilman et al. [58] that showed that a purely entropic condensa-
tion transition is possible in a system of inert droplets coated with strongly bound
telechelic polymers [59]. In the system studied in Ref. [58], the telechelic polymers
could redistribute over the droplets in such a way that they maximized their entropy.
In the present chapter, we report numerical simulations that support the mean-field
scenario of Ref. [58]. However, there are some differences in the underlying model.
Most importantly, as we already discussed in the previous chapter, we consider a
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5 Liquid - vapor transition for DNA coated colloids

suspension of colloids grafted with long polymers that have “sticky” ends. These
polymers can reversibly form bridges between the colloids. In this model, every col-
loid has a fixed number of linkers. A possible realization of the system that we study
is a mixture of colloids, chemically coated with very long strands of double-stranded
DNA (dsDNA), functionalized with a single-stranded (ssDNA) linker. These link-
ers can bind via complementary ssDNA linkers to other DNA-coated colloids [42].
More details on the experiment have been discussed in previous chapter. These sys-
tems have the interesting property that individual bonds may be weak but, because of
the large number of bonds between two particles, the materials tend to be mechani-
cally strong. Moreover, they should be “self-healing” [60]: if two blobs of a dense
network of colloids coated with long DNA are brought into contact, they should be
able to reconnect in such a way that the interface disappears. The time scale over
which this happens depends on the binding strength between the complementary ss-
DNA fragments. In this chapter we report our study in two different regime: first in
high binding-strength regime where all the DNA sticky ends are hybridized. As we
will discuss, a study of this regime allows us to show unambiguously that the phase
transition that we observe is entropic in nature. We then extend the model in two
ways that make it more realistic. First of all, we consider the situation where the
binding free energy for DNA hybridization is finite. This allows us to ascertain to
what extent the observed phase behavior is robust. Secondly, we consider the situa-
tion where the polymers bind to fixed positions on the surface of the colloids. This
is different from the simpler model with infinite binding strengths that we study first,
where we have allowed the polymers to be bound to any position on the surface of a
colloid. The model with polymer end groups that are mobile on the colloid is easier
to study numerically. However, the model with fixed grafting positions is presumably
closer to the experimental situation.

5.2 Very high binding energy regime

In what follows, we refer to the particles with complementary functionalization as A
and B. Colloids type A and B are identical except that they are coated with comple-
mentary strands of ssDNA. We consider the situation where the radius of gyration
of the polymer is comparable to the size of the colloids. In Grand Canonical Monte
Carlo simulations, the volume, temperature and chemical potential of the system are
fixed. As we consider a system where all n polymers per particle are bound to a com-
plementary polymer on another particle, particles are inserted and removed form the
system as dimers. The dimers that we attempt to insert are taken from an equilibrated
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5.2 Very high binding energy regime

Figure 5.1: Snapshot of a low-density and high density system of a 1:1 mixture of hard
colloids (shown as big dark grey and light grey spheres) coated with complementary
sticky polymers (shown as small gray spheres in left snapshot)

population of dimers that have intra, but no inter-molecular interactions. When we
remove particles, we first check for free dimers (i.e. dimers that are not bound to
any other particles). The acceptance rules are constructed such that detailed balance
is satisfied. Full details on the method has been discussed in the previous chapter.
In our simulations, we considered 1:1 mixtures of hard colloids coated with n sticky
polymer arms. We consider the cases n = 2−10 — the ratio of the radius of gyration
of the polymer to the radius of the colloid was fixed at 0.3, which is a number that
can easily be achieved in experiments on DNA-coated colloids [42]. We describe
the individual polymer arms as soft colloids, using the approach of Ref. [61, 46]. In
particular, the work of Ref. [46] strongly suggests that the soft-colloid picture is to
a good approximation transferable to the interaction between polymer moieties that
are bound together. In the present work we simply postulate that all polymer-polymer
interaction are transferable and are of the form:

Vp−p(r)

kBT
= 2 exp(−0.7(

r

Rg
)2) (5.1)
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Figure 5.2: Pair-potentials: The transferable repulsive potential between two poly-
mers, Vp−p, has the form given by Eqn. 5.1. The transferable potential between poly-
mer and colloid is repulsive and has the form Vp−c(r) 580kBT exp(−(r/rcol)

2/0.23).
A harmonic spring (Vho(x) = kBTx2/(2R2

g)) is assumed to tether the center of mass
of each polymer to “its” colloid. When two complementary DNA’s are bound, they
are assumed to be connected by a harmonic spring (V ′

ho) that is half as stiff as Vho.

The effective interaction between a free polymer and a hard colloid is not known in
closed form [61]. We therefore performed lattice simulation to compute the potential
of mean force acting between a self-avoiding polymer and a hard colloid with a size
ratio 1:3 (see caption of Fig. 5.2). We found that the repulsive interaction between
polymer and colloid is again transferable (i.e. it is the same for bound and unbound
polymers). As in Ref. [46], the attractive interaction between a polymer and hard col-
loid is well described by a simple harmonic spring. The end points of the polymers
are considered to be harmonically bound to the center of mass of the soft colloid [46].
One end of the polymer is bound to the surface of a colloid, the other end can bind
reversibly to a complementary polymer. The degree of association between the col-
loids depends on the binding constants between the A and B polymers. To bring out
the entropic nature of the phase transitions, we consider the case where the binding
constant is very large, implying that there are no free A or B ends. However, we
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5.2 Very high binding energy regime

do assume that bonds can switch, such that the topology of a resulting network can
change.

We performed Grand-Canonical Monte Carlo simulations [11] on such a system
of functionalized colloids. In our simulations, we chose the thermal energy kBT
as the unit of energy and σ, the diameter of the colloid, as the unit of length. We
considered a system with a volume V = 1000σ3. In order to speed up the simulation
we used cluster moves and cell lists. Cluster moves has been described in details in
the appendix 5.5.

Reaction switches The binding-unbinding moves in high hybridization energy
regime are slightly different and actually are much easier than the one we described
in chapter 4 for a general case. Here in every switch move two pairs of connected
polymers, A1−B1 and A2−B2 will switch partners to lets say A1−B2 and A2−B1.
The value of hybridization energy ∆Ghyb ( which assumed to be very large) does not
appear in the acceptance argument. This is because all the polymers will be always in
the form of dimers and therefore through switching move old and new configurations
both will have the same number of bonds. The details of the algorithm is presented
in appendix 5.4

At very low densities, this system will form a gas of AB dimers. The reason is
that, because the polymers are very long, all polymers on an A colloid can bind
to a complementary polymer on a B colloid. In contrast to the model considered in
Ref. [58], loop formation and, more importantly, polymer fractionation, cannot occur.
The resulting dimers are “inert” as they have no unsatisfied bonds. Upon increasing
the chemical potential of the system, we find that the colloids undergo a very sudden
transition from a low-density “dimer” phase to a uniform, high-density phase where
almost all colloids belong to a single, system-spanning cluster (see Fig. 5.1). We
stress that, as the degree of association of the polymers is 100%, independent of
density, there is no change in the energy of the system upon condensation. The
condensation transition is completely driven by the gain in entropy associated with an
increase of the number of allowed network topologies. In Fig. 5.3 we plot the density
of the system against fugacity of dimers fD ≡ exp(βµ). fD can be interpreted as
the density of a gas of non-interacting dimers that is in osmotic equilibrium with the
interacting system, and µ is the chemical potential of dimers. Fig. 5.3 shows that
at very low densities the dimer concentrations in the system is equal to the fugacity
fD, as it should. The location and magnitude of the density jump depend on the
number of polymers per colloid. For the case where we have only two arms per
colloids, the magnitude of the density jump is very small (possibly zero): it could not
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Figure 5.3: Off-lattice grand-canonical simulation; Number density ρ versus the dimer
fugacity fD. The straight line indicates the ideal gas behavior
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Figure 5.4: Off-lattice grand-canonical simulation; The average number of distinct
connected neighbors versus fD

be resolved in our simulations. It is not surprising that particles with two arms should
exhibit qualitatively different behavior because particles with at most two neighbors
can only belong to finite linear clusters that are not system-spanning. Nevertheless,
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5.2 Very high binding energy regime

there still is an entropic advantage associated with the formation of a dense phase, as
a single configuration can be decorated in many distinct ways by polymer bridges.

The discontinuous transition from vapor to the dense phase is also reflected in
the behavior of Nc, the average number of distinct connected neighbors per particle,
shown in Fig. 5.4. At low densities, where all colloids form dimers, Nc = 1. With
increasing chemical potential, Nc undergoes a discontinuous jump, except, possibly,
for the case n = 2 where there is no system spanning cluster in the dense phase.

��������������
��������������

��������������
��������������
	�	�	�	
�
�
�
 �������

�������

�
�
�
�������

��������������
������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

������
������

 �  � 
 �  � 

Figure 5.5: Bond switches in lattice simulation.

In order to bring out the essential features of the entropy-driven condensation re-
action, we constructed a lattice-gas model of our continuous system. We performed
Grand Canonical MC simulations on a simple 3D lattice model that has the following
features:

1. A lattice site is either empty, or occupied by an A or a B particle

2. There are equal numbers of A and B particles

3. Every A(B) particle is connected with exactly n bonds to nearest neighbor
B(A) particles.

In addition to dimer insertion/removal moves, we perform bond switches that con-
serve the total number of bonds per particle (see Fig. 5.5). In this way, we ensure that
there are no unsatisfied bonds. Fig. 5.6 shows the relation between the occupation of
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5 Liquid - vapor transition for DNA coated colloids

the lattice and the fugacity of dimers. The behavior shown in Fig. 5.6 is qualitatively
very similar to that of the colloid-polymer system. Fig. 5.7 shows Nc as a function
of chemical potential for lattice simulations. Similar to the off-lattice simulation, a
discontinuous density jump can be seen with increasing chemical potential.

One of the characteristic features of the first order transition is existence of a hys-
teresis loop. As the lattice simulations are much faster than their off-lattice counter-
parts, it is easier to probe the hysteretic behavior in lattice simulations. We studied
hysteresis by initializing the system in the cluster phase and lowering the chemical
potential. We do not observe hysteresis for systems with three bonds per colloid.
However, systems with larger number of bonds per colloid, show clear hysteresis
loops. This is hardly surprising as networks of multiply-bonded particles are rela-
tively “immune” to the fluctuations that are needed for cluster break-up [62].

We cannot compare our results directly with the mean-field predictions of Ref. [58]
because that work considers colloids coated by telechelic polymers where the number
of polymers bound to any given colloid is not fixed: due to fractionation, it will be
higher in the dense phase than in the dilute phase. In contrast, the linkers in the
system studied here cannot fractionate, nor can they loop back onto the same particle.
If we consider the limit of the mean-field predictions of Ref. [58] for the case where
telechelics can only form bridges and no loops, the phase diagram that is predicted
by Ref. [58] shows some similarity to the one that we observe. However, the finite-
density dimer phase that we observe before condensation is not found in Ref. [58],
presumably because it is preempted by polymer fractionation.

Thus far, our discussion of models for polymer-coated colloid system focused on
the case where the polymer endpoint are always bound to complementary polymers.
This allowed us to show unambiguously that the condensation transition is of en-
tropic nature. However, in real systems of DNA-coated colloids, the binding strength
is finite. Using Grand-Canonical Monte Carlo simulations, we have verified that low-
ering of the polymer-polymer association constant does not qualitatively change the
scenario that we have observed, as long as the binding strength is above a critical
value below which the first-order transition disappears. We therefore expect that the
entropic condensation should be observable in real DNA-coated colloid systems, pro-
vided that the polymers are long enough to allow n of them to bridge the same pair
of colloids. Clearly, this condition is not fulfilled for polymers that have a radius of
gyration that is much smaller than the radius of the colloids [27]. Coating colloids by
long polymers is feasible: Schmatko et al. [42] reported confocal microscopy studies
of colloids coated with λ-DNA with a radius of gyration equal to 1.6 times the col-
loid radius. These experiments observed strong clustering of the colloids, followed by
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Figure 5.6: Lattice grand-canonical simulation; ρ versus fD. The straight line indi-
cates the ideal gas behavior.
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Figure 5.7: Lattice grand-canonical simulation; The average number of distinct con-
nected neighbors versus fD.

structural arrest. This is due to the strong DNA hybridization under the experimental
conditions studied in Ref. [42]. In order to observe the underlying phase transition
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5 Liquid - vapor transition for DNA coated colloids

predicted here, the experiments would have to be carried out under conditions where
the DNA network is able to rearrange on experimental time scales.

5.3 Finite binding strength and fixed grafting points

In the previous section we showed that if the binding strength between complemen-
tary ssDNA strands becomes infinite, the system can undergo a first-order gas-liquid
transition that is purely entropic in origin. We considered this limit of very high
hybridization free energies in order to focus on a situation where the energetic con-
tribution to the binding free energy is the same at all densities. However, in prac-
tical situations, the binding free energy for ssDNA hybridization will, of course, be
finite and we therefore must determine to what extent the phase behavior that we de-
scribed in the previous section is changed when we allow bonds to dissociate. In our
simulations, the hybridization free energy enters the problem via the expression for
the equilibrium constant for the dimerization of two complementary ssDNA strands
(eqn. 4.19).

K = exp

(

∆Ghyb

kBT

)

.

Inspection of this equation shows that the quantity that determines the equilibrium
constant K is the ratio ∆Ghyb/(kBT ). In other words, a variation of the hybridization
free energy may be viewed as an equivalent to a variation of the temperature. It
should be stressed that this picture, although convenient, is not quite correct as ∆Ghyb

contains both an energetic and an entropic part: varying T only changes the ratio
∆Ehyb/kBT . It remains true, however, that variations in T lead to changes in K.
Therefore, when we speak about “low” or “high” temperatures, what we mean is
large or small values of K. In fact, as mentioned in chapter 4, temperature is one of
the important control parameters in experiments on self-assembly of coated particles.

Let us now consider what happens if we start with a situation of infinite binding
strength (“T = 0”) and then lower the equilibrium constant K. Clearly, if K is very
small, the DNA-coated colloids will not bind at all and hence the gas-liquid transi-
tion will have disappeared. It is therefore logical to assume that, as K decreases,
the liquid-vapor transition will shift to higher colloid densities and will eventually
move to densities that are unphysical. Alternatively, one might consider the situa-
tion where a system with a large equilibrium constant has formed a dense aggregate.
Upon heating, this system will reach a point where the dilute phase is more stable
and the aggregate will melt spontaneously. How exactly the liquid-vapor transition
disappears will depend on the number of DNA chains per colloid. In the present
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5.3 Finite binding strength and fixed grafting points

section we report simulations at finite temperature that allow us to ascertain how sen-
sitive the vapor-liquid phase behavior of DNA-coated colloid is to variations in the
binding constant for hybridization. On the basis of these simulations, we can roughly
estimate at what value of K the liquid-vapor transition disappears for a given number
of DNA chains per colloid. However, as we could not compute the free energy of the
dense and dilute phases, we cannot present a real phase diagram.

Our simulation method is similar to the one described in the previous section,
except that the way we deal with finite binding constants forces us to use the approach
described in chapter 4. As explained above, we consider the case where the DNA
chains are grafted at fixed positions on the surface of the colloids.

As before, we model each polymer as a “soft” sphere connected to a hard colloidal
sphere, but now the connection point is fixed. This model is expected to be closer to
the experimental situation where the biotinilated DNA binds irreversibly to a given
streptavidin unit that is grafted to the colloidal surface. In what follows, we refer
to the points where DNA chains are attached to the colloidal surface as “patches’.
The harmonic free energy of the stretched DNA chain will then be calculated by
considering the distance between the center of the soft sphere that represents the
polymer to its fixed patch. There are several ways to decorate the colloidal particles
with patches: one could either generate a regular patch distribution or one that is
random. Here we consider the first case that is a colloid with regular patches on the
surface. We chose this situation for the sake of simplicity. However, we stress that
it would certainly be interesting to study the (more realistic) case of random patch
distributions - in particular when coupled to the case where the number of DNAs per
colloid itself is a fluctuating quantity. Such studies are the subject of future work.

As before we refer to the particles with complementary functionalization as A and
B. Colloids type A and B are identical except that they are coated with complemen-
tary strands of ssDNA. We consider the situation where the radius of gyration of the
polymer is comparable to the size of the colloids. In our simulations, we consider
1:1 mixtures of hard colloids coated with n sticky polymer arms. We consider the
cases n = 2, 4, 6, and 8. The ratio of the radius of gyration of the polymer to the ra-
dius of the colloid was fixed at 0.3, which is a number that can easily be achieved in
experiments on DNA-coated colloids [42]. The polymer-polymer interactions were
modeled using the soft-sphere pair potentials described in the previous chapter.

The degree of association between the colloids depends on K, the equilibrium
constant for hybridization of the stretched complementary ssDNA connected to the
A and B colloids. As explained in chapter 4, we can use the available information
about binding of isolated ssDNA strands in solution to design a Monte Carlo scheme
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Figure 5.8: Density ρ versus fugacity f for colloids coated with four DNA strands fixed
on the surface patches with a tetrahedral arrangement. K denotes the equilibrium
constant for hybridization of the ssDNA segments. The transition to the liquid phase
gets sharper as K increases.The straight dashed line indicates the ideal gas behavior.
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Figure 5.9: Density ρ versus fugacity f for colloids coated with six DNA strands
fixed on the surface patches arranged on the vertices of an octahedron. The straight
dashed line indicates the ideal gas behavior. K denotes the equilibrium constant for
hybridization of the ssDNA segments. The transition to the liquid phase gets sharper
as K increases.
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Figure 5.10: Density ρ versus fugacity f for colloids coated with two DNA strands
fixed on the surface patches opposite to each other. The straight dashed line indicates
the ideal gas behavior.K denotes the equilibrium constant for hybridization of the
ssDNA segments. The transition to the liquid state remains smooth even for the
highest values of K that we consider. The changeover in slope that we observe is
mainly caused by increased dimerization as the density of the gas is increased.

that will allow long, ssDNA-terminated dsDNA chains to bind to, or unbind from, a
chain with complementary “sticky” end. A large value of K corresponds to a large
hybridization free energy and thus approaches the conditions of 100% hybridization
that we studied in the previous section.

As the DNAs are grafted to fixed patches on the colloidal surface, our MC algo-
rithm should not only handle the translational motion of the colloids, but also their
rotation. A well-known and convenient way to implement arbitrary rotations of a 3D
object is to use a quaternion-based description (see appendix 5.6). Rotational moves
are essential as the distance between two patches on neighboring colloids depends
both on the center-of-mass separation and the orientation of the colloids. Clearly,
two polymers that are grafted to facing sides of the colloids will bind more easily
(i.e. will have to stretch less in order to bind) than polymers that are on the far side.
Apart from the rotational moves, we use the same methods as before: cell lists (see,
e.g. Ref. [11]) and cluster moves (see appendix 5.5).

The aim of the present section to show qualitatively how a finite binding constant
affects the phase behavior reported in the previous section. To this end we performed
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5 Liquid - vapor transition for DNA coated colloids

grand-canonical simulations where we determined the density of the system as a func-
tion of the fugacity of the colloids, for a range of values of the equilibrium constant
K. Fig. 5.8 shows a plot of density versus fugacity for colloids with four polymeric
arms. Note that the fugacity f that we use here is the fugacity of colloidal particles.
In the previous section, where we considered the limit K → ∞, the low-density
limit of the system was an ideal gas of dimers. However, for finite K, dimers will
dissociate at low densities and the limiting state is an ideal gas of isolated A and B
colloids. For the case n = 4 the DNA polymers were attached to patches that were
arranged on the corners of a tetrahedron. Note that for low values of K (e.g. K=10),
the density in the system varies continuously with fugacity. As K increases, the vari-
ation in density becomes sharper and for K ≥ 100 the behavior is very similar to that
observed in the limit K → ∞.

Fig. 5.9 shows a similar plot as shown in Fig. 5.8, but now for six polymers per
colloid. Compared to the case n = 4, the transition already becomes sharp at lower
hybridization free energies. Fig. 5.10 shows the same behavior for the case where we
have two DNA strands per colloid. Here we can see that the density profile develops
a shoulder and the slope of the profile increases as we increase K . However even
for the highest K values the profile remains smooth and shows no indication of a
first-order phase transition - again in agreement with the behavior of the K → ∞
limit discussed in the previous section.

As we cannot directly determine the point where the phase transition becomes
first order, we use an indirect method to estimate the values of n and K where this
happens. To this end, we compute for various values of n the inverse of the maximum
slope of (d ln ρ/d ln f). In other words, we compute the minimum of

D ≡ d ln f

d ln ρ
=

dP

dρ
.

For an ideal gas, D = 1 (we use units where kBT = 1). At a critical point, (dP/dρ)
vanishes, and hence we can estimate the location of the critical point by plotting
(dP/dρ) vs ln K. The reason for plotting D versus ln K is that the latter quantity is
proportional to 1/T . As most of our points are not very close to the critical point, we
can safely ignore possible non-classical behavior in the vicinity of the critical point
and simply assume that D vanishes linearly as we approach ln Kc. Unfortunately,
our present data only allow a very rough estimate of the location of the critical point.
This is because our discrete data and rather large fugacity spacing lead to large error
bars in the slopes.

At high K, the slopes of the curves for large n converge to a value that is slightly
larger than zero. In contrast, in the limit of small K the slopes converge to one.
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Figure 5.11: D, defined as the inverse of maximum slope of ln ρ versus ln f , as a func-
tion of ln K. High K corresponds to a large hybridization free energy. As explained
in the text, the values corresponding to the open symbols are not reliable. These
points have therefore been ignored in the rough fit. The dashed lines show the linear
extrapolation to the part of the curves shown in closed symbols. Kc is the value of
K when the dashed lines meet line D = 0. The curves converge to a value which is
slightly larger than zero. This is because of our discrete data and our rather large
value for fugacity intervals.

Ideally, a linear extrapolation of D vs ln K would reach a value of zero at a finite
value of K. However, it is hard to extract the linear regions in Fig. 5.11, since we
have only few points between the “low” and the “high” K regions. To obtain a rough
estimate of the critical value of Kc, we fitted a line to the D points in Fig. 5.11, in
the intermediate regime. As n increases, the estimate of Kc moves to lower values
of Kc ( see Fig. 5.12 ), or, using our loose analogy between ln Kc and 1/T , to higher
temperatures. This observation indicates that the phase transition that we observe in
the limit K → ∞ is robust, in the sense that it survives also for finite K. However,
below a certain (n-dependent) value of K, the gas-liquid transition disappears. In
particular, as Kc must be positive and finite, 1/Kc ≥ 0. Fig. 5.12 suggests that
for n ≤ 2, the estimated value of 1/Kc becomes negative. This suggests that no
first-order phase transitions are possible for n ≤ 2.
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Figure 5.12: The estimate of 1/ ln Kc versus number of arms n. As n increses 1/ ln Kc

goes to higher values.

5.4 Appendix A: Reaction switches

For large values of the hybridization equilibrium constant and, a fortiori, in the limit
K → ∞, special Monte Carlo moves are required to change the topology of the
network of DNA “bonds” linking different colloids. To achieve this, we employ the
following algorithm.

1. Randomly choose a position r in the simulation box.

2. Make a list of all the pairs of connected polymers with centers-of-mass within
a range rcut from r. If not at least two A-B pairs are located within the cutoff
volume, the trial move is rejected.

3. Randomly choose two of the pairs from the list of pairs within the cutoff vol-
ume. Let us denote these pairs as A1 − B1 and A2 − B2

4. Calculate the sum of Uolds for these two pairs, where U is given by Eqn. 5.2
below:

UAi,Bj
=

κ

4
R2

Ai,Bj
. (5.2)
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5. Attempt to switch the bonds between these particles: the trial configuration in
our example will be A1 − B2 and A2 − B1; calculate the sum of Unew .

6. Accept the move with probability exp(−β∆U) where ∆U = Unew − Uold.

note: The cutoff distance rcut is fixed at the beginning of the simulation and it does
not change. Introducing rcut is not necessary however it speeds up the simulation.
Ideally, one cutoff volume contains on average two bound pairs.

note: During a bond-switch move, the hybridization free energy does not play a
role because the number of bonds before and after the move is the same. Therefore,
all the constant coefficients K/[ρ0(κ/(4π))3/2] drop out of the acceptance probabil-
ity.

5.5 Appendix B: Cluster moves

If one performs a simulation of a system consisting of composite objects, it may
be quite inefficient to use only conventional MC moves that attempt to move the
entire object by displacing one of the constituent units at a time. For such systems,
it is often advisable to combine individual particle moves with cluster moves that
attempt to displace the composite object as a whole. If the composite object is a
cluster of particles, some care should be taken to define the cluster in a way that will
not violate detailed balance (see e.g. [11]). However, for the case discussed in the
present chapter, the definition of clustering is straightforward as we have DNA bonds
between the particles that constitute a cluster. Normally a cluster of bonded colloids
is a fairly compact object. In a cluster move, we first label all particles according
to the cluster that they belong to. We then choose one of the colloids with equal
probability and attempt to displace the cluster to which the selected particle belongs
in an otherwise normal MC move. To compute the acceptance probability of such a
cluster move we must calculate the sum of all the pair-interactions between particles
inside the cluster and all other particles except the particles that belong to the same
cluster as, during a cluster move, all relative distances within a cluster are conserved.

5.6 Appendix C: Quaternions

Here we briefly explain what are quaternions and how they can be used to rotate a
vector in space. In general a quaternion q can be represented with a complex number
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with three different imaginary parts:

q = q0 + iq1 + jq2 + kq3, (5.3)

and the only main rules between imaginary units i, j, and k are:.

i2 = j2 = k2 = ijk = −1. (5.4)

A quaternion can also be represented as vector in imaginary space plus a scalar. In
other words a vector is a quaternion with zero “real” part. Now consider a vector ~v
which is represented by ~v = (0,v) and consider the transformation

~v′ = q~vq∗ (5.5)

where q is a unit quaternion and therefore

q2
0 + q2

1 + q2
2 + q2

3 = 1. (5.6)

and q∗ = (q0,−q) is the conjugate of q = (q0,q). It is straightforward to prove
that such a transformation preserves lengths and angles and the triple product, and
therefore represents a rotation. The rotation will be around the unit axis of vector ω
that is defined by the vector part of the quaternion

ω = (q1, q2, q3) (5.7)

and the angle of rotation will be specified by the following equation

cos(θ) = 2q2
0 − 1 (5.8)

Therefore any quaternion q = (q0,q) will uniquely define a rotation through an
angle θ around axis ω which is given in the above equations. Refs. [63, 64] provide
more information on proof of the above arguments, quaternions in general, and their
applications.

To rotate a colloid, we employ the following algorithm:

1. Randomly choose a colloid and generate a random quaternion q that satisfies
Eqn. 5.6.

2. Calculate the sum of Uold where U includes the spring interactions between
the chosen colloid and its bond polymers.

3. Rotate all the patches of the chosen colloid around colloid’s CM, using Eqn. 5.5.
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4. Calculate the sum of Unew.

5. Accept the move with probability exp(−β∆U) where ∆U = Unew − Uold.
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Summary

This thesis focuses on the use of simulations to study the behavior of colloidal par-
ticles that form multiple “bonds” via chain molecules with “sticky” ends. These
“telechelic” chains can either bind reversibly to the surface of the colloids or to the
complementary grafted polymers (in particular DNA) bound to other colloids. We
provide a general introduction on the topic in Chapter 1, and we introduce some of
the terms that we frequently use in the thesis.

In chapter 2, we describe a Grand-Canonical Monte-Carlo technique for lattice
polymers that is particularly efficient for simulations of “telechelic” polymers that
interact strongly with surfaces. The combination of high binding strength and ex-
cluded volume interactions between the polymers makes “brute force” calculations
difficult. For this situation, we propose an algorithm that combines the so-called
“moment-propagation (MP)” with the configuration bias method. The basic idea of
our method is to use the statistics of non-self-avoiding walks to grow self-avoiding
walks (SAW) on a lattice. We show that it is feasible to implement the MP scheme
in such a way that detailed balance is satisfied. In order to test the efficiency of the
MP method, we specifically apply it to two sets of problems. In the first part, we
compute the depletion interaction between two plates and compare results with ex-
isting data [25]. The results show that the MP scheme quantitatively reproduces the
known behavior of this model system. However, the MP approach is less efficient
than configurational bias Monte Carlo (CBMC) in this case. The situation is reversed
in the case of telechelic polymers between two plates. In the second part, we study
the telechelic chains and we show that, in particular in the case of highly heteroge-
neous surfaces, the MP method is more efficient than CBMC. Moreover, the relative
advantage of MP is more pronounced at high volume fractions.

The “moment-propagation (MP)” methodology developed in chapter 2 can be ap-
plied in a completely different part of biophysics: we shall argue that the moment-
propagation method offers a novel, and uniquely sensitive, method to identify un-
derlying steps in noisy experimental data on the motion of molecular motors along
linear “tracks” (e.g. kinesin on microtubules). This “detour” is the subject of Chapter
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3. The key observation that underlies the approach that we propose here is the fol-
lowing: what we aim to extract is not the precise trajectory of the molecular motor,
but the parameters (step-size(s) and step frequency) that are intrinsic properties of the
molecular motor under the experimental conditions. There may be many step histo-
ries that fit the experimental data to within the experimental error and we argue that
it is often better to extract the desired information from the set of possible stepping-
motor trajectories. We will exploit the analogy between stepping-motor trajectories
and realizations of a directed random walk. The algorithm that we propose in chapter
3 is based on the numerical estimate of the “free energy” of an ensemble of directed
random walks with different step sizes. We argue that this method allows us to detect
the underlying step size of a molecular motor under “noisy” conditions where exist-
ing methods fail. We show that the method is capable of detecting a single step size
at several times lower signal-to-noise ratio than the existing methods.

Chapters 4 and 5 contain a description of the coarse-grained model that we use to
simulate systems of colloidal particles coated with long DNA strands with “sticky”
ends. The sticky ends are “complementary” ssDNA strands that can selectively bind
to each other. In particular, chapter 4 describes a Grand Canonical MC simulation
technique to study the self-assembly of mixtures of colloids that are coated with
“sticky” DNA strands. Using a coarse-grained model to represent DNA strand as
“soft” spheres, we study the effective interactions between the colloids. We use lat-
tice Monte Carlo simulations as well as existing studies on colloid-polymer pair-
potentials to address the problem of effective interactions between a telechelic poly-
mer and a colloid at zero density. Moreover, We develop a method that allows us
to relate the binding properties of DNA-coated colloids to the (known) equilibrium
constants for dimerization in solutions of the isolated “sticky” ssDNA strands. Based
on this method, we build our binding - unbinding algorithm for the sticky strands.

In chapter 5 we use the GC method mentioned above to simulate an equimolar
mixture of hard colloids coated with “long” polymers with complementary ssDNA
strands ends. In the first part, we study the regime where the ends are strongly asso-
ciated. In this regime there are no “free” sticky ends in the system and we use Monte
Carlo “switch” moves that allow for rearrangement of bonds in pairs. Under these
conditions we observe a first order vapor-liquid transition from a dilute gas of col-
loidal dimers to a dense, liquid-like phase. This transition is driven exclusively by the
increase in entropy associated with bond disorder. In the second part of the chapter
we show qualitatively how a finite binding constant affects the phase behavior. Here
we use the GC method together with the binding - unbinding moves that has been
introduced in chapter 4. We show that the transition persists as we switch to low but



finite temperatures. We study how the critical point at which the first-order transition
disappears depends on the number ratio between polymers and colloids.





Samenvatting1

De focus van dit proefschrift ligt op het gebruik van computersimulaties van col-
loïdale deeltjes. Deze deeltjes kunnen onderling meerdere bindingen aangaan door
middel van hun ketenmoleculen met “plakkerige” uiteinden. Deze “telechelische”
ketens kunnen zowel aan het oppervlak van de deeltjes als aan de com plementaire
ketenuiteinden van de overige deeltjes binden (voornamelijk in het geval van DNA).
In hoofdstuk 1 geven we een algemene introduct ie over dit onderwerp, ook worden
enkele veelgebruikte termen binnen dit proefschrift geïntroduceerd.

In hoofdtuk 2, beschrijven we een Groot-Canonische Monte-Carlo techniek voor
polymeren op een rooster. Deze techniek is bij uitstek geschikt voor de simulatie
van telechelische polymeren die een sterke interactie met oppervlaktes hebben. De
combinatie van de hoge bindingssterkte en uitgesloten volume interacties tussen de
polymeren maakt “brute kracht” berekingen moeilijk. Voor deze situatie, stellen
wij een algoritme voor, die de zogenoemde “momental e propagatie” (MP) met de
configuratie-bias methode combineerd. De basis gedachte achter onze methode is
om de statistieken van niet-zelfmijdende wandeling en te gebruiken om zelfmijdende
wandelingen op het raster werk te laten ontstaan. We laten zien dat het mogelijk is het
MP schema zo te implementeren dat aa n de gedetailleerde balans wordt voldaan. Om
de efficientie van de MP methode te testen, passen wij deze toe op twee vraagstukken.
In het eerste vraagstuk, berekenen we de depletie-interactie tussen twee platen en
vergelijken deze met resultaten uit al bestaande data [25]. De resultaten laten zien dat
het MP schema quantitatief het gedrag van dit model systeem reproduceerd. Hoewel,
in dit geval deze methode minder presteert dan de configuratie-bias Monte -Carlo
(CBMC). Het omgekeerde is het geval als telechelische polymeren aanwezig zijn
tussen de platen. In het tweede vraagstuk, bestuderen we telechelische ketens en
laten we zien dat, vooral in het geval van zeer hetrogene oppervlaktes, de MP meth-
ode efficienter is dan de CBMC. Bovendien is het relatieve gewin van MP meer in
het oog springend bij hoge volume fracties.

De door ons ontwikkelde “momentale propagatie” (MP) methodologie uit hoofd-
1 Translation by Nienke Geerts
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stuk 2 kan ook toegepast worden in compleet andere delen van de biofy sica. We
hebben sterke argumenten om aan te tonen dat de MP methode een nieuwe, unieke,
zeer gevoelige mogelijkheid biedt om ondeliggende stappen te identificeren in met
ruis omgeven experimentele data van de voortbeweging van moleculaire motors over
lineaire “wegen” (bv kinesine op microtubuli). Dit zijproject is het onderwerp van
hoofdstuk 3. Het sterkste punt van onze aanpak is dat we niet de precieze weg die de
motor heeft afgelegd uit de data proberen te halen, maar de parameters (stapgrootte
en stapfrequentie) die de intrinsieke eigenschappen van de motor onder bepaalde ex-
perimentele condities zijn. Aan gezien er binnen de experimentele fout vele stap
geschiedenissen kunnen zijn die op de experimentele data passen, stellen wij dat het
vaak beter is om de gew ilde informatie uit alle mogelijke afgelegde wegen van de
stappende-motor te halen. Hierbij zullen wij de gelijksoortigheid tussen de afgelegde
weg van de stappende motor en de realisatie van een gerichte dronkemanswandeling
uit buiten. Het algoritme wat we in hoofdstuk 3 voorstellen is gebaseerd o p een num-
merieke schatting van de “vrije energie” van een ensemble gegenereerd door gerichte
dronkemanswandelingen met verschillende stapgrootte. We bearg umenteren dat
deze methode ons instaat stelt om de onderliggende stapgrootte van een moleculaire
motor te achterhalen uit data met ruis, waar andere methode s falen. Ook laten we
zien dat de methode in staat is de grootte van een stap te bepalen bij een vele malen
kleinere signaal-tot-ruis verhouding dan de bes taande methodes.

Hoofdstuk 4 en 5 bevatten een beschrijving van een “grofkorrelig” model, dat ge-
bruikt wordt om colloïdale deeltjes me t lange DNA ketens met “plakkerige” uitein-
den te simuleren. De uiteinden zijn complementaire ssDNA stukjes, die selectief
aan elkaar kunnen binden. Hoofds tuk 4, in het bijzonder, beschrijft een Groot-
Canonische Monte-Carlo simulatie techniek om de zelfbindendheid van dit soort
deeltjes te bestu deren. Door gebruik te maken van een grofkorrelig model dat DNA
ketens vertaald naar “zachte” bollen, bestuderen we de effectieve interactie tussen
de dee ltjes. We gebruiken zowel Monte-Carlo rasterwerksimulaties als bestaande
studies over colloïdaal deeltje-polymeer paarpotentialen om het probleem van ef-
fect ieve interacties tussen een telechelisch polymeer en een colloïdaal deeltje bij
oneindig lage druk aan te geven. Ook hebben we een methode ontwikkeld om de
bindingseigenschappen van DNA gedeklaagde deeltjes te relateren aan de (bekende)
evenwichtsconstante van het vormen van dimeren onder geïsoleerde “plakkeri ge”
ssDNA ketens in oplossing. Op deze methode is ons binding-ontbindingsalgoritme
voor de plakkerige uiteindes gebaseerd.

In hoofdstuk 5 gebruiken we de bovengenoemde GC-methode om een mix van
gelijke hoeveelheid harde deeltjes met “lange polymere” arm en met complemtaire



ssDNA uiteinden te simuleren. Eerst wordt het regime onderzocht waarbij de uitein-
den sterk met elkaar associëren. In dit regime zijn erg geen ongebonden uiteinden
binnen het systeem.
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